A Closer Look at Few-shot Image Generation
- URL: http://arxiv.org/abs/2205.03805v2
- Date: Sat, 15 Apr 2023 14:51:43 GMT
- Title: A Closer Look at Few-shot Image Generation
- Authors: Yunqing Zhao, Henghui Ding, Houjing Huang, Ngai-Man Cheung
- Abstract summary: When transferring pretrained GANs on small target data, the generator tends to replicate the training samples.
Several methods have been proposed to address this few-shot image generation, but there is a lack of effort to analyze them under a unified framework.
We propose a framework to analyze existing methods during the adaptation.
Second contribution proposes to apply mutual information (MI) to retain the source domain's rich multi-level diversity information in the target domain generator.
- Score: 38.83570296616384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern GANs excel at generating high quality and diverse images. However,
when transferring the pretrained GANs on small target data (e.g., 10-shot), the
generator tends to replicate the training samples. Several methods have been
proposed to address this few-shot image generation task, but there is a lack of
effort to analyze them under a unified framework. As our first contribution, we
propose a framework to analyze existing methods during the adaptation. Our
analysis discovers that while some methods have disproportionate focus on
diversity preserving which impede quality improvement, all methods achieve
similar quality after convergence. Therefore, the better methods are those that
can slow down diversity degradation. Furthermore, our analysis reveals that
there is still plenty of room to further slow down diversity degradation.
Informed by our analysis and to slow down the diversity degradation of the
target generator during adaptation, our second contribution proposes to apply
mutual information (MI) maximization to retain the source domain's rich
multi-level diversity information in the target domain generator. We propose to
perform MI maximization by contrastive loss (CL), leverage the generator and
discriminator as two feature encoders to extract different multi-level features
for computing CL. We refer to our method as Dual Contrastive Learning (DCL).
Extensive experiments on several public datasets show that, while leading to a
slower diversity-degrading generator during adaptation, our proposed DCL brings
visually pleasant quality and state-of-the-art quantitative performance.
Project Page: yunqing-me.github.io/A-Closer-Look-at-FSIG.
Related papers
- Few-Shot Image Generation by Conditional Relaxing Diffusion Inversion [37.18537753482751]
Conditional Diffusion Relaxing Inversion (CRDI) is designed to enhance distribution diversity in synthetic image generation.
CRDI does not rely on fine-tuning based on only a few samples.
It focuses on reconstructing each target image instance and expanding diversity through few-shot learning.
arXiv Detail & Related papers (2024-07-09T21:58:26Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
The rapid advancement of photorealistic generators has reached a critical juncture where the discrepancy between authentic and manipulated images is increasingly indistinguishable.
Although there have been a number of publicly available face forgery datasets, the forgery faces are mostly generated using GAN-based synthesis technology.
We propose a large-scale, diverse, and fine-grained high-fidelity dataset, namely GenFace, to facilitate the advancement of deepfake detection.
arXiv Detail & Related papers (2024-02-03T03:13:50Z) - GE-AdvGAN: Improving the transferability of adversarial samples by
gradient editing-based adversarial generative model [69.71629949747884]
Adversarial generative models, such as Generative Adversarial Networks (GANs), are widely applied for generating various types of data.
In this work, we propose a novel algorithm named GE-AdvGAN to enhance the transferability of adversarial samples.
arXiv Detail & Related papers (2024-01-11T16:43:16Z) - Improving Diversity in Zero-Shot GAN Adaptation with Semantic Variations [61.132408427908175]
zero-shot GAN adaptation aims to reuse well-trained generators to synthesize images of an unseen target domain.
With only a single representative text feature instead of real images, the synthesized images gradually lose diversity.
We propose a novel method to find semantic variations of the target text in the CLIP space.
arXiv Detail & Related papers (2023-08-21T08:12:28Z) - Few-shot Image Generation via Masked Discrimination [20.998032566820907]
Few-shot image generation aims to generate images of high quality and great diversity with limited data.
It is difficult for modern GANs to avoid overfitting when trained on only a few images.
This work presents a novel approach to realize few-shot GAN adaptation via masked discrimination.
arXiv Detail & Related papers (2022-10-27T06:02:22Z) - FakeCLR: Exploring Contrastive Learning for Solving Latent Discontinuity
in Data-Efficient GANs [24.18718734850797]
Data-Efficient GANs (DE-GANs) aim to learn generative models with a limited amount of training data.
Contrastive learning has shown the great potential of increasing the synthesis quality of DE-GANs.
We propose FakeCLR, which only applies contrastive learning on fake samples.
arXiv Detail & Related papers (2022-07-18T14:23:38Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
We propose a novel Consistency and Diversity induced human Motion (CDMS) algorithm.
Our model factorizes the source and target data into distinct multi-layer feature spaces.
A multi-mutual learning strategy is carried out to reduce the domain gap between the source and target data.
arXiv Detail & Related papers (2022-02-10T06:23:56Z) - One-Shot Generative Domain Adaptation [39.17324951275831]
This work aims at transferring a Generative Adversarial Network (GAN) pre-trained on one image domain to a new domain referring to as few as just one target image.
arXiv Detail & Related papers (2021-11-18T18:55:08Z) - InfoMax-GAN: Improved Adversarial Image Generation via Information
Maximization and Contrastive Learning [39.316605441868944]
Generative Adversarial Networks (GANs) are fundamental to many generative modelling applications.
We propose a principled framework to simultaneously mitigate two fundamental issues in GANs: catastrophic forgetting of the discriminator and mode collapse of the generator.
Our approach significantly stabilizes GAN training and improves GAN performance for image synthesis across five datasets.
arXiv Detail & Related papers (2020-07-09T06:56:11Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.