FakeCLR: Exploring Contrastive Learning for Solving Latent Discontinuity
in Data-Efficient GANs
- URL: http://arxiv.org/abs/2207.08630v2
- Date: Tue, 19 Jul 2022 01:55:10 GMT
- Title: FakeCLR: Exploring Contrastive Learning for Solving Latent Discontinuity
in Data-Efficient GANs
- Authors: Ziqiang Li, Chaoyue Wang, Heliang Zheng, Jing Zhang, Bin Li
- Abstract summary: Data-Efficient GANs (DE-GANs) aim to learn generative models with a limited amount of training data.
Contrastive learning has shown the great potential of increasing the synthesis quality of DE-GANs.
We propose FakeCLR, which only applies contrastive learning on fake samples.
- Score: 24.18718734850797
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-Efficient GANs (DE-GANs), which aim to learn generative models with a
limited amount of training data, encounter several challenges for generating
high-quality samples. Since data augmentation strategies have largely
alleviated the training instability, how to further improve the generative
performance of DE-GANs becomes a hotspot. Recently, contrastive learning has
shown the great potential of increasing the synthesis quality of DE-GANs, yet
related principles are not well explored. In this paper, we revisit and compare
different contrastive learning strategies in DE-GANs, and identify (i) the
current bottleneck of generative performance is the discontinuity of latent
space; (ii) compared to other contrastive learning strategies,
Instance-perturbation works towards latent space continuity, which brings the
major improvement to DE-GANs. Based on these observations, we propose FakeCLR,
which only applies contrastive learning on perturbed fake samples, and devises
three related training techniques: Noise-related Latent Augmentation,
Diversity-aware Queue, and Forgetting Factor of Queue. Our experimental results
manifest the new state of the arts on both few-shot generation and limited-data
generation. On multiple datasets, FakeCLR acquires more than 15% FID
improvement compared to existing DE-GANs. Code is available at
https://github.com/iceli1007/FakeCLR.
Related papers
- Enhancing Unsupervised Sentence Embeddings via Knowledge-Driven Data Augmentation and Gaussian-Decayed Contrastive Learning [37.54523122932728]
We propose a pipeline-based data augmentation method via large language models (LLMs)
To tackle the issue of low data diversity, our pipeline utilizes knowledge graphs (KGs) to extract entities and quantities.
To address high data noise, the GCSE model uses a Gaussian-decayed function to limit the impact of false hard negative samples.
arXiv Detail & Related papers (2024-09-19T16:29:58Z) - Exploring Data Efficiency in Zero-Shot Learning with Diffusion Models [38.36200871549062]
Zero-Shot Learning (ZSL) aims to enable classifiers to identify unseen classes by enhancing data efficiency at the class level.
This is achieved by generating image features from pre-defined semantics of unseen classes.
In this paper, we demonstrate that limited seen examples generally result in deteriorated performance of generative models.
This unified framework incorporates diffusion models to improve data efficiency at both the class and instance levels.
arXiv Detail & Related papers (2024-06-05T04:37:06Z) - Improving Data-aware and Parameter-aware Robustness for Continual Learning [3.480626767752489]
This paper analyzes that this insufficiency arises from the ineffective handling of outliers.
We propose a Robust Continual Learning (RCL) method to address this issue.
The proposed method effectively maintains robustness and achieves new state-of-the-art (SOTA) results.
arXiv Detail & Related papers (2024-05-27T11:21:26Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - DuDGAN: Improving Class-Conditional GANs via Dual-Diffusion [2.458437232470188]
Class-conditional image generation using generative adversarial networks (GANs) has been investigated through various techniques.
We propose a novel approach for class-conditional image generation using GANs called DuDGAN, which incorporates a dual diffusion-based noise injection process.
Our method outperforms state-of-the-art conditional GAN models for image generation in terms of performance.
arXiv Detail & Related papers (2023-05-24T07:59:44Z) - LD-GAN: Low-Dimensional Generative Adversarial Network for Spectral
Image Generation with Variance Regularization [72.4394510913927]
Deep learning methods are state-of-the-art for spectral image (SI) computational tasks.
GANs enable diverse augmentation by learning and sampling from the data distribution.
GAN-based SI generation is challenging since the high-dimensionality nature of this kind of data hinders the convergence of the GAN training yielding to suboptimal generation.
We propose a statistical regularization to control the low-dimensional representation variance for the autoencoder training and to achieve high diversity of samples generated with the GAN.
arXiv Detail & Related papers (2023-04-29T00:25:02Z) - Regularizing Generative Adversarial Networks under Limited Data [88.57330330305535]
This work proposes a regularization approach for training robust GAN models on limited data.
We show a connection between the regularized loss and an f-divergence called LeCam-divergence, which we find is more robust under limited training data.
arXiv Detail & Related papers (2021-04-07T17:59:06Z) - Feature Quantization Improves GAN Training [126.02828112121874]
Feature Quantization (FQ) for the discriminator embeds both true and fake data samples into a shared discrete space.
Our method can be easily plugged into existing GAN models, with little computational overhead in training.
arXiv Detail & Related papers (2020-04-05T04:06:50Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
Training stability is still a lingering concern of generative adversarial networks (GANs)
In this paper, we explore a relation network architecture for the discriminator and design a triplet loss which performs better generalization and stability.
Experiments on benchmark datasets show that the proposed relation discriminator and new loss can provide significant improvement on variable vision tasks.
arXiv Detail & Related papers (2020-02-24T11:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.