論文の概要: Federated Random Reshuffling with Compression and Variance Reduction
- arxiv url: http://arxiv.org/abs/2205.03914v2
- Date: Tue, 10 May 2022 08:40:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-12 20:54:05.112402
- Title: Federated Random Reshuffling with Compression and Variance Reduction
- Title(参考訳): 圧縮と分散低減を併用したフェデレートランダムリシャッフリング
- Authors: Grigory Malinovsky, Peter Richt\'arik
- Abstract要約: ランダムリシャッフル(RR)は、経験的リスク最小化を通じて教師付き機械学習モデルをトレーニングするための非常に一般的な方法である。
組み込みであり、しばしば標準の機械学習ソフトウェアでデフォルトとして設定される。
我々はFedRRをさらに改善するための3つの新しいアルゴリズムを紹介した。1つはシャッフルによる分散を、もう1つは圧縮による分散をモデル化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Random Reshuffling (RR), which is a variant of Stochastic Gradient Descent
(SGD) employing sampling without replacement, is an immensely popular method
for training supervised machine learning models via empirical risk
minimization. Due to its superior practical performance, it is embedded and
often set as default in standard machine learning software. Under the name
FedRR, this method was recently shown to be applicable to federated learning
(Mishchenko et al.,2021), with superior performance when compared to common
baselines such as Local SGD. Inspired by this development, we design three new
algorithms to improve FedRR further: compressed FedRR and two variance reduced
extensions: one for taming the variance coming from shuffling and the other for
taming the variance due to compression. The variance reduction mechanism for
compression allows us to eliminate dependence on the compression parameter, and
applying additional controlled linear perturbations for Random Reshuffling,
introduced by Malinovsky et al.(2021) helps to eliminate variance at the
optimum. We provide the first analysis of compressed local methods under
standard assumptions without bounded gradient assumptions and for heterogeneous
data, overcoming the limitations of the compression operator. We corroborate
our theoretical results with experiments on synthetic and real data sets.
- Abstract(参考訳): 無置換標本を用いた確率的勾配降下(sgd)の変種であるランダム・リシャフリング(rr)は、経験的リスク最小化による教師あり機械学習モデルを訓練する非常に一般的な方法である。
実用性能が優れているため、標準の機械学習ソフトウェアに組み込まれ、しばしばデフォルトとして設定される。
fedrrの名称の下では、最近この手法は、局所sgdのような一般的なベースラインと比較して優れたパフォーマンスを持つフェデレーション学習(mishchenko et al.,2021)に適用可能であることが示されている。
この開発に触発されて、federrをさらに改善するための3つの新しいアルゴリズムをデザインした: 圧縮federrと2つの分散縮小拡張: 1つはシャッフルリングから生じる分散を改ざんし、もう1つは圧縮による分散を改ざんする。
圧縮の分散低減機構により、圧縮パラメータへの依存性をなくし、malinovskyらによって導入されたランダムリシャフリングに対する追加制御線形摂動を適用することができる。
(2021)は最適な分散を排除するのに役立つ。
本研究では, 圧縮演算子の限界を克服し, 境界勾配仮定や不均質データを用いずに, 標準仮定の下で圧縮局所法を初めて解析する。
我々は、合成および実データ集合に関する実験で理論結果と照合する。
関連論文リスト
- Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Unified Multivariate Gaussian Mixture for Efficient Neural Image
Compression [151.3826781154146]
先行変数と超優先度を持つ潜伏変数は、変動画像圧縮において重要な問題である。
ベクトル化された視点で潜伏変数を観察する際、相関関係や相関関係は存在する。
当社のモデルでは、速度歪曲性能が向上し、圧縮速度が3.18倍に向上した。
論文 参考訳(メタデータ) (2022-03-21T11:44:17Z) - Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent:
Convergence Guarantees and Empirical Benefits [21.353189917487512]
勾配降下(SGD)とその変種は、機械学習問題のアルゴリズムとして確立されている。
我々は、最小バッチSGDが全ログ類似損失関数の臨界点に収束することを証明して一歩前進する。
我々の理論的な保証は、核関数が指数的あるいは固有デカイを示すことを前提としている。
論文 参考訳(メタデータ) (2021-11-19T22:28:47Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
勾配降下(SGD)により最適化された高次元におけるランダム特徴(RF)回帰特性について検討する。
本研究では, RF回帰の高精度な非漸近誤差境界を, 定常および適応的なステップサイズSGD設定の下で導出する。
理論的にも経験的にも二重降下現象を観察する。
論文 参考訳(メタデータ) (2021-10-13T17:47:39Z) - Oversampling Divide-and-conquer for Response-skewed Kernel Ridge
Regression [20.00435452480056]
本研究では,分割・分散手法の限界を克服するために,新しい応答適応分割戦略を開発する。
提案手法は, 従来のダックKRR推定値よりも小さい平均二乗誤差(AMSE)を有することを示す。
論文 参考訳(メタデータ) (2021-07-13T04:01:04Z) - Causally Invariant Predictor with Shift-Robustness [72.1844679700197]
本稿では,領域間の分散シフトに頑健な因果予測器を提案する。
経験的学習のために,データ再生に基づく直感的で柔軟な推定法を提案する。
合成データと実データの両方の実験結果から,予測器の有効性が示された。
論文 参考訳(メタデータ) (2021-07-05T09:07:29Z) - Re-parameterizing VAEs for stability [1.90365714903665]
本稿では,変分オートエンコーダ(VAE)の数値安定性を訓練するための理論的アプローチを提案する。
我々の研究は、VAEが複雑な画像データセット上のアート生成結果に到達できるようにするための最近の研究によって動機づけられている。
我々は、それらが依存する正規分布のパラメータ化方法に小さな変更を加えることで、VAEを安全にトレーニングできることを示します。
論文 参考訳(メタデータ) (2021-06-25T16:19:09Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
経験的リスク最小化(Empirical Risk Minimization, ERM)は、機械学習のワークホースであるが、適応的に収集されたデータを使用すると、そのモデルに依存しない保証が失敗する可能性がある。
本研究では,仮説クラス上での損失関数の平均値を最小限に抑えるため,適応的に収集したデータを用いた一般的な重み付きERMアルゴリズムについて検討する。
政策学習では、探索がゼロになるたびに既存の文献のオープンギャップを埋める率-最適後悔保証を提供する。
論文 参考訳(メタデータ) (2021-06-03T09:50:13Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
分散的ロバストな教師付き学習は、現実世界のアプリケーションのための信頼性の高い機械学習システムを構築するための重要なパラダイムとして登場している。
Wasserstein DRSLを解くための既存のアルゴリズムは、複雑なサブプロブレムを解くか、勾配を利用するのに失敗する。
我々はmin-max最適化のレンズを通してwaserstein drslを再検討し、スケーラブルで効率的に実装可能な超勾配アルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-04-27T16:56:09Z) - Distributionally Robust Federated Averaging [19.875176871167966]
適応サンプリングを用いた堅牢な学習周期平均化のためのコミュニケーション効率の高い分散アルゴリズムを提案する。
我々は、フェデレーション学習環境における理論的結果に関する実験的証拠を裏付ける。
論文 参考訳(メタデータ) (2021-02-25T03:32:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。