論文の概要: A Structured Span Selector
- arxiv url: http://arxiv.org/abs/2205.03977v3
- Date: Wed, 23 Aug 2023 05:18:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-24 19:29:29.772010
- Title: A Structured Span Selector
- Title(参考訳): 構造化スパンセレクタ
- Authors: Tianyu Liu, Yuchen Eleanor Jiang, Ryan Cotterell, Mrinmaya Sachan
- Abstract要約: 本稿では,新しい文法に基づく構造化スパン選択モデルを提案する。
我々は、コア参照解決とセマンティックロールラベリングという2つの一般的なスパン予測タスクでモデルを評価した。
- 参考スコア(独自算出の注目度): 100.0808682810258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many natural language processing tasks, e.g., coreference resolution and
semantic role labeling, require selecting text spans and making decisions about
them. A typical approach to such tasks is to score all possible spans and
greedily select spans for task-specific downstream processing. This approach,
however, does not incorporate any inductive bias about what sort of spans ought
to be selected, e.g., that selected spans tend to be syntactic constituents. In
this paper, we propose a novel grammar-based structured span selection model
which learns to make use of the partial span-level annotation provided for such
problems. Compared to previous approaches, our approach gets rid of the
heuristic greedy span selection scheme, allowing us to model the downstream
task on an optimal set of spans. We evaluate our model on two popular span
prediction tasks: coreference resolution and semantic role labeling. We show
empirical improvements on both.
- Abstract(参考訳): 多くの自然言語処理タスク、例えば共参照解決や意味的役割ラベリングは、テキストスパンの選択と決定を必要とする。
このようなタスクに対する典型的なアプローチは、タスク固有のダウンストリーム処理で可能なスパンをすべてスコア付けし、グレッシブにスパンを選択することです。
しかしこのアプローチは、どのスパンを選択するべきかという誘導バイアスを含まない(例えば、選択したスパンが構文的成分である傾向がある)。
本稿では,このような問題に対する部分的なスパンレベルのアノテーションを活用することを学習する,文法に基づく構造化スパン選択モデルを提案する。
従来の手法と比較して,提案手法はヒューリスティックなグレーディ・スパン選択スキームを排除し,最適なスパンのセットで下流タスクをモデル化することができる。
我々は、コア参照の解決とセマンティックロールのラベル付けという2つの一般的な予測タスクでモデルを評価する。
両方に実証的な改善がある。
関連論文リスト
- Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - InstructionNER: A Multi-Task Instruction-Based Generative Framework for
Few-shot NER [31.32381919473188]
InstructionNERというマルチタスク命令ベースの生成フレームワークを提案する。
具体的には、NERタスクを生成問題として再構成し、タスク固有の命令と回答オプションでソース文を豊かにし、自然言語のエンティティと型を推論する。
実験結果から,本手法は5つのデータセットのベースラインを数ショット設定で一貫的に上回っていることがわかった。
論文 参考訳(メタデータ) (2022-03-08T07:56:36Z) - Retrieve-and-Fill for Scenario-based Task-Oriented Semantic Parsing [110.4684789199555]
シナリオベースのセマンティックパーシングを導入し、最初に発話の「scenario」を曖昧にする必要がある元のタスクの変種を紹介します。
この定式化により、タスクの粗くきめ細かな側面を分離することが可能となり、それぞれがオフザシェルフニューラルネットワークモジュールで解決される。
私たちのモデルはモジュール化され、差別化可能で、解釈可能で、シナリオから余分な監督を得られるようになります。
論文 参考訳(メタデータ) (2022-02-02T08:00:21Z) - Relation-aware Video Reading Comprehension for Temporal Language
Grounding [67.5613853693704]
ビデオ中の時間的言語基盤は、与えられたクエリ文に関連する時間的スパンをローカライズすることを目的としている。
本稿では,映像読解の時間的基盤を定式化し,それに対応する関係認識ネットワーク(RaNet)を提案する。
論文 参考訳(メタデータ) (2021-10-12T03:10:21Z) - Using Optimal Transport as Alignment Objective for fine-tuning
Multilingual Contextualized Embeddings [7.026476782041066]
我々は,マルチリンガルな文脈化表現を改善するために,微調整時のアライメント目的として最適輸送(OT)を提案する。
このアプローチでは、微調整の前に単語アライメントペアを必要とせず、教師なしの方法で文脈内の単語アライメントを学習する。
論文 参考訳(メタデータ) (2021-10-06T16:13:45Z) - Few-shot Intent Classification and Slot Filling with Retrieved Examples [30.45269507626138]
そこで我々は,新しいバッチソフトマックスの手法を用いて,同じラベルを持つスパンの類似した文脈表現を学習するスパンレベル検索手法を提案する。
提案手法は,CLINCおよびSNIPSベンチマークにおいて,様々な数ショット設定で過去のシステムより優れていた。
論文 参考訳(メタデータ) (2021-04-12T18:50:34Z) - Dynamic Context Selection for Document-level Neural Machine Translation
via Reinforcement Learning [55.18886832219127]
文書レベルの翻訳における動的コンテキストの選択に有効な手法を提案する。
動的文脈文の選択と活用を促進するために,新しい報酬を提案する。
実験により,提案手法は異なるソース文に対して適応的な文脈文を選択することができることが示された。
論文 参考訳(メタデータ) (2020-10-09T01:05:32Z) - A Cross-Task Analysis of Text Span Representations [52.28565379517174]
最適なスパン表現はタスクによって異なり、個々のタスクの異なる側面でも異なることが分かる。
また、スパン表現の選択は、微調整エンコーダよりも、固定された事前訓練エンコーダによる影響が大きいことも判明した。
論文 参考訳(メタデータ) (2020-06-06T13:37:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。