Multi-level Consistency Learning for Semi-supervised Domain Adaptation
- URL: http://arxiv.org/abs/2205.04066v1
- Date: Mon, 9 May 2022 06:41:18 GMT
- Title: Multi-level Consistency Learning for Semi-supervised Domain Adaptation
- Authors: Zizheng Yan, Yushuang Wu, Guanbin Li, Yipeng Qin, Xiaoguang Han,
Shuguang Cui
- Abstract summary: Semi-supervised domain adaptation (SSDA) aims to apply knowledge learned from a fully labeled source domain to a scarcely labeled target domain.
We propose a Multi-level Consistency Learning framework for SSDA.
- Score: 85.90600060675632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised domain adaptation (SSDA) aims to apply knowledge learned from
a fully labeled source domain to a scarcely labeled target domain. In this
paper, we propose a Multi-level Consistency Learning (MCL) framework for SSDA.
Specifically, our MCL regularizes the consistency of different views of target
domain samples at three levels: (i) at inter-domain level, we robustly and
accurately align the source and target domains using a prototype-based optimal
transport method that utilizes the pros and cons of different views of target
samples; (ii) at intra-domain level, we facilitate the learning of both
discriminative and compact target feature representations by proposing a novel
class-wise contrastive clustering loss; (iii) at sample level, we follow
standard practice and improve the prediction accuracy by conducting a
consistency-based self-training. Empirically, we verified the effectiveness of
our MCL framework on three popular SSDA benchmarks, i.e., VisDA2017, DomainNet,
and Office-Home datasets, and the experimental results demonstrate that our MCL
framework achieves the state-of-the-art performance.
Related papers
- Joint semi-supervised and contrastive learning enables zero-shot domain-adaptation and multi-domain segmentation [1.5393913074555419]
SegCLR is a versatile framework designed to segment volumetric images across different domains.
We demonstrate the superior performance of SegCLR through a comprehensive evaluation.
arXiv Detail & Related papers (2024-05-08T18:10:59Z) - Semi-supervised Domain Adaptation via Prototype-based Multi-level
Learning [4.232614032390374]
In semi-supervised domain adaptation (SSDA), a few labeled target samples of each class help the model to transfer knowledge representation from the fully labeled source domain to the target domain.
We propose a Prototype-based Multi-level Learning (ProML) framework to better tap the potential of labeled target samples.
arXiv Detail & Related papers (2023-05-04T10:09:30Z) - IDA: Informed Domain Adaptive Semantic Segmentation [51.12107564372869]
We propose an Domain Informed Adaptation (IDA) model, a self-training framework that mixes the data based on class-level segmentation performance.
In our IDA model, the class-level performance is tracked by an expected confidence score (ECS) and we then use a dynamic schedule to determine the mixing ratio for data in different domains.
Our proposed method is able to outperform the state-of-the-art UDA-SS method by a margin of 1.1 mIoU in the adaptation of GTA-V to Cityscapes and of 0.9 mIoU in the adaptation of SYNTHIA to City
arXiv Detail & Related papers (2023-03-05T18:16:34Z) - Generalized Semantic Segmentation by Self-Supervised Source Domain
Projection and Multi-Level Contrastive Learning [79.0660895390689]
Deep networks trained on the source domain show degraded performance when tested on unseen target domain data.
We propose a Domain Projection and Contrastive Learning (DPCL) approach for generalized semantic segmentation.
arXiv Detail & Related papers (2023-03-03T13:07:14Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Semi-supervised Domain Adaptation for Semantic Segmentation [3.946367634483361]
We propose a novel two-step semi-supervised dual-domain adaptation (SSDDA) approach to address both cross- and intra-domain gaps in semantic segmentation.
We demonstrate that the proposed approach outperforms state-of-the-art methods on two common synthetic-to-real semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-20T16:13:00Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Domain Adaptation by Class Centroid Matching and Local Manifold
Self-Learning [8.316259570013813]
We propose a novel domain adaptation approach, which can thoroughly explore the data distribution structure of target domain.
We regard the samples within the same cluster in target domain as a whole rather than individuals and assigns pseudo-labels to the target cluster by class centroid matching.
An efficient iterative optimization algorithm is designed to solve the objective function of our proposal with theoretical convergence guarantee.
arXiv Detail & Related papers (2020-03-20T16:59:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.