High-Resolution NMR Spectroscopy at Large Fields with Nitrogen Vacancy
Centers
- URL: http://arxiv.org/abs/2205.04150v2
- Date: Mon, 3 Apr 2023 11:45:23 GMT
- Title: High-Resolution NMR Spectroscopy at Large Fields with Nitrogen Vacancy
Centers
- Authors: C. Munuera-Javaloy, A. Tobalina, and J. Casanova
- Abstract summary: We map the relevant energy shifts in the amplitude of an induced nuclear spin signal that is subsequently transferred to the sensor.
Our method leads to high spectral resolutions ultimately limited by the coherence of the nuclear spin signal.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensembles of nitrogen-vacancy (NV) centers are used as sensors to detect NMR
signals from micron-sized samples at room temperature. In this scenario, the
regime of large magnetic fields is especially interesting as it leads to a
large nuclear thermal polarisation -- thus, to a strong sensor response even in
low concentration samples -- while chemical shifts and J-couplings become more
accessible. Nevertheless, this regime remains largely unexplored owing to the
difficulties to couple NV-based sensors with high-frequency nuclear signals. In
this work, we circumvent this problem with a method that maps the relevant
energy shifts in the amplitude of an induced nuclear spin signal that is
subsequently transferred to the sensor. This stage is interspersed with
free-precession periods of the sample nuclear spins where the sensor does not
participate. Thus, our method leads to high spectral resolutions ultimately
limited by the coherence of the nuclear spin signal.
Related papers
- High-Field Microscale NMR Spectroscopy with NV Centers in Dipolarly-Coupled Samples [0.0]
Diamond-based quantum sensors have enabled high-resolution NMR spectroscopy at the microscale.
We present a protocol that enables the scanning of nuclear spins in dipolarly-coupled samples at high magnetic fields.
arXiv Detail & Related papers (2024-05-21T15:14:16Z) - Automatic Detection of Nuclear Spins at Arbitrary Magnetic Fields via Signal-to-Image AI Model [0.0]
We present a signal-to-image deep learning model capable of automatically inferring the number of nuclear spins surrounding a NV sensor.
Our model is trained to operate effectively across various magnetic field scenarios, requires no prior knowledge of the involved nuclei, and is designed to handle noisy signals.
arXiv Detail & Related papers (2023-11-25T14:18:38Z) - J-coupling NMR Spectroscopy with Nitrogen Vacancy Centers at High Fields [0.0]
We present a protocol to access J-couplings in both homonuclear and heteronuclear cases with NV centers at high magnetic fields.
Our protocol leads to a clear spectrum exclusively containing J-coupling features with high resolution.
arXiv Detail & Related papers (2023-11-20T16:15:41Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Dynamical decoupling methods in nanoscale NMR [0.0]
Nuclear magnetic resonance schemes can be applied to micron-, and nanometer-sized samples by the aid of quantum sensors such as nitrogen-vacancy (NV) color centers in diamond.
These minute devices allow for magnetometry of nuclear spin ensembles with high spatial and frequency resolution at ambient conditions.
arXiv Detail & Related papers (2021-04-21T16:18:48Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z) - An integrated magnetometry platform with stackable waveguide-assisted
detection channels for sensing arrays [45.82374977939355]
We present a novel architecture which allows us to create NV$-$-centers a few nanometers below the diamond surface.
We experimentally verify the coupling efficiency, showcase the detection of magnetic resonance signals through the waveguides and perform first proof-of-principle experiments in magnetic field and temperature sensing.
In the future, our approach will enable the development of two-dimensional sensing arrays facilitating spatially and temporally correlated magnetometry.
arXiv Detail & Related papers (2020-12-04T12:59:29Z) - Optimisation of a diamond nitrogen vacancy centre magnetometer for
sensing of biological signals [44.62475518267084]
We present advances in biomagnetometry using nitrogen vacancy centres in diamond.
We show magnetic field sensitivity of approximately 100 pT/$sqrtHz$ in the DC/low frequency range using a setup designed for biological measurements.
arXiv Detail & Related papers (2020-04-05T18:44:34Z) - Resolving single molecule structures with nitrogen-vacancy centers in diamond [0.8192907805418583]
We present theoretical proposals for two-dimensional nuclear magnetic resonance spectroscopy protocols based on Nitrogen-vacancy (NV) centers in diamond.
We employ a singular value thresholding matrix completion algorithm to further reduce the amount of data required to permit the identification of key features in the spectra of strongly sub-sampled data.
arXiv Detail & Related papers (2014-07-23T15:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.