論文の概要: Improved Evaluation and Generation of Grid Layouts using Distance
Preservation Quality and Linear Assignment Sorting
- arxiv url: http://arxiv.org/abs/2205.04255v1
- Date: Mon, 9 May 2022 13:15:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-10 17:36:23.779977
- Title: Improved Evaluation and Generation of Grid Layouts using Distance
Preservation Quality and Linear Assignment Sorting
- Title(参考訳): 距離保存品質と線形割当ソートを用いたグリッドレイアウトの評価と生成の改善
- Authors: Kai Uwe Barthel, Nico Hezel, Klaus Jung and Konstantin Schall
- Abstract要約: 類似性によってソートされた画像は、より多くの画像を同時に見ることができ、ストックフォトエージェンシーやeコマースアプリケーションにとって非常に有用である。
このようなアレンジメントを評価するための様々な指標が存在するが、人間の知覚品質と測定値の相関に関する実験的な証拠は少ない。
本研究では, 距離保存品質(DPQ)を新たな指標として提案し, 配置の質を評価する。
- 参考スコア(独自算出の注目度): 1.7842332554022693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Images sorted by similarity enables more images to be viewed simultaneously,
and can be very useful for stock photo agencies or e-commerce applications.
Visually sorted grid layouts attempt to arrange images so that their proximity
on the grid corresponds as closely as possible to their similarity. Various
metrics exist for evaluating such arrangements, but there is low experimental
evidence on correlation between human perceived quality and metric value. We
propose Distance Preservation Quality (DPQ) as a new metric to evaluate the
quality of an arrangement. Extensive user testing revealed stronger correlation
of DPQ with user-perceived quality and performance in image retrieval tasks
compared to other metrics. In addition, we introduce Fast Linear Assignment
Sorting (FLAS) as a new algorithm for creating visually sorted grid layouts.
FLAS achieves very good sorting qualities while improving run time and
computational resources.
- Abstract(参考訳): 類似性によってソートされた画像は、より多くの画像を同時に見ることができ、ストックフォトエージェンシーやeコマースアプリケーションにとって非常に有用である。
視覚的に並べ替えられたグリッドレイアウトは、グリッドに近接する画像が、その類似性に可能な限り近いように配置しようとする。
このようなアレンジメントを評価するための様々な指標が存在するが、人間の知覚品質と測定値の相関に関する実験的な証拠は少ない。
本稿では,アレンジメントの品質評価のための新しい指標として,距離保存品質(dpq)を提案する。
広汎なユーザテストでは,DPQと画像検索タスクの品質と性能の相関が,他の指標と比較して強いことがわかった。
さらに,FLAS(Fast Linear Assignment Sorting)を,視覚的なグリッドレイアウト作成のための新しいアルゴリズムとして導入する。
FLASは、実行時間と計算資源を改善しながら、非常に優れたソート品質を実現する。
関連論文リスト
- Optimizing CLIP Models for Image Retrieval with Maintained Joint-Embedding Alignment [0.7499722271664144]
Contrastive Language and Image Pairing (CLIP) はマルチメディア検索における変換手法である。
CLIPは通常、2つのニューラルネットワークを同時にトレーニングし、テキストとイメージペアのジョイント埋め込みを生成する。
本稿では,様々な画像に基づく類似性検索シナリオに対して,CLIPモデルを最適化するという課題に対処する。
論文 参考訳(メタデータ) (2024-09-03T14:33:01Z) - Adaptive Image Quality Assessment via Teaching Large Multimodal Model to Compare [99.57567498494448]
我々はLMMに基づくノン参照IQAモデルであるCompare2Scoreを紹介する。
トレーニング中、同じIQAデータセットの画像を比較することで、スケールアップ比較命令を生成する。
9つのIQAデータセットの実験により、Compare2Scoreは、トレーニング中にテキスト定義の比較レベルを効果的にブリッジすることを確認した。
論文 参考訳(メタデータ) (2024-05-29T17:26:09Z) - CrossScore: Towards Multi-View Image Evaluation and Scoring [24.853612457257697]
相互参照画像品質評価法は画像評価景観のギャップを埋める。
本手法は,地上の真理参照を必要とせず,精度の高い画像品質評価を可能にする。
論文 参考訳(メタデータ) (2024-04-22T17:59:36Z) - Pairwise Comparisons Are All You Need [22.798716660911833]
ブラインド画像品質評価(BIQA)アプローチは、様々な画像に一様に適用される一般的な品質基準に依存しているため、現実のシナリオでは不足することが多い。
本稿では、従来のBIQAの制限を回避すべく設計されたペアワイズ比較フレームワークであるPICNIQを紹介する。
PICNIQは、サイコメトリックスケーリングアルゴリズムを用いることで、対比較をジャストオブジェクタブルディファレンス(JOD)の品質スコアに変換し、画像品質の粒度と解釈可能な指標を提供する。
論文 参考訳(メタデータ) (2024-03-13T23:43:36Z) - Contextual Similarity Aggregation with Self-attention for Visual
Re-ranking [96.55393026011811]
本稿では,自己注意を伴う文脈的類似性集約による視覚的再ランク付け手法を提案する。
提案手法の汎用性と有効性を示すため,4つのベンチマークデータセットの総合的な実験を行った。
論文 参考訳(メタデータ) (2021-10-26T06:20:31Z) - Cross-Modal Retrieval Augmentation for Multi-Modal Classification [61.5253261560224]
画像の非構造化外部知識源とそれに対応するキャプションを用いて視覚的質問応答を改善する。
まず,画像とキャプションを同一空間に埋め込むための新しいアライメントモデルを訓練し,画像検索の大幅な改善を実現する。
第2に、トレーニングされたアライメントモデルを用いた検索強化マルチモーダルトランスは、強いベースライン上でのVQAの結果を改善することを示す。
論文 参考訳(メタデータ) (2021-04-16T13:27:45Z) - Co-Attention for Conditioned Image Matching [91.43244337264454]
照明, 視点, コンテキスト, 素材に大きな変化がある場合, 野生のイメージペア間の対応性を決定するための新しい手法を提案する。
他のアプローチでは、イメージを個別に扱うことで、画像間の対応を見出すが、その代わりに、画像間の差異を暗黙的に考慮するよう、両画像に条件を付ける。
論文 参考訳(メタデータ) (2020-07-16T17:32:00Z) - Image Matching across Wide Baselines: From Paper to Practice [80.9424750998559]
局所的な特徴とロバストな推定アルゴリズムの包括的なベンチマークを導入する。
パイプラインのモジュール構造は、さまざまなメソッドの容易な統合、構成、組み合わせを可能にします。
適切な設定で、古典的な解決策は依然として芸術の知覚された状態を上回る可能性があることを示す。
論文 参考訳(メタデータ) (2020-03-03T15:20:57Z) - I Am Going MAD: Maximum Discrepancy Competition for Comparing
Classifiers Adaptively [135.7695909882746]
我々は、MAD(Maximum Discrepancy)コンペティションを命名する。
任意に大きいラベル付き画像のコーパスから小さなテストセットを適応的にサンプリングする。
結果のモデル依存画像集合に人間のラベルを付けると、競合する分類器の相対的な性能が明らかになる。
論文 参考訳(メタデータ) (2020-02-25T03:32:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。