論文の概要: Introspective Deep Metric Learning for Image Retrieval
- arxiv url: http://arxiv.org/abs/2205.04449v2
- Date: Tue, 5 Sep 2023 11:42:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 12:13:39.733656
- Title: Introspective Deep Metric Learning for Image Retrieval
- Title(参考訳): 画像検索のためのイントロスペクティブ深度学習
- Authors: Wenzhao Zheng, Chengkun Wang, Jie Zhou, Jiwen Lu
- Abstract要約: 良好な類似性モデルは、より堅牢なトレーニングのために曖昧なイメージをよりよく扱うように注意しながら、意味的な相違を考慮すべきである、と我々は主張する。
本稿では,画像の意味的特徴とあいまいさを記述した,意味的埋め込みだけでなく,付随する不確実性埋め込みを用いて画像を表現することを提案する。
提案したIDMLフレームワークは,不確実性モデリングによるディープメトリック学習の性能向上を実現し,広く使用されているCUB-200-2011,Cars196,Stanford Online Productsデータセットの最先端結果を得る。
- 参考スコア(独自算出の注目度): 80.29866561553483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes an introspective deep metric learning (IDML) framework
for uncertainty-aware comparisons of images. Conventional deep metric learning
methods produce confident semantic distances between images regardless of the
uncertainty level. However, we argue that a good similarity model should
consider the semantic discrepancies with caution to better deal with ambiguous
images for more robust training. To achieve this, we propose to represent an
image using not only a semantic embedding but also an accompanying uncertainty
embedding, which describes the semantic characteristics and ambiguity of an
image, respectively. We further propose an introspective similarity metric to
make similarity judgments between images considering both their semantic
differences and ambiguities. The proposed IDML framework improves the
performance of deep metric learning through uncertainty modeling and attains
state-of-the-art results on the widely used CUB-200-2011, Cars196, and Stanford
Online Products datasets for image retrieval and clustering. We further provide
an in-depth analysis of our framework to demonstrate the effectiveness and
reliability of IDML. Code is available at: https://github.com/wzzheng/IDML.
- Abstract(参考訳): 本稿では,不確実性を考慮した画像比較のための内観的深度学習(IDML)フレームワークを提案する。
従来のディープメトリック学習手法は、不確実性レベルに関係なく、画像間の自信ある意味距離を生成する。
しかし,良質な類似性モデルでは,より強固なトレーニングのために曖昧な画像を扱うための注意が必要である。
そこで本研究では,画像の意味的特徴とあいまいさをそれぞれ記述した,意味的埋め込みだけでなく付随する不確実性埋め込みを用いた画像表現を提案する。
さらに,その意味的差異とあいまいさの両方を考慮し,画像間の類似性判定を行うイントロスペクティブ類似度尺度を提案する。
提案したIDMLフレームワークは、不確実性モデリングによる深度メトリック学習の性能を改善し、画像検索とクラスタリングのためのCUB-200-2011、Cars196、Stanford Online Productsデータセットの最先端結果を得る。
さらに,IDMLの有効性と信頼性を示すために,フレームワークの詳細な分析を行う。
コードは、https://github.com/wzzheng/IDML.comで入手できる。
関連論文リスト
- Knowledge Fused Recognition: Fusing Hierarchical Knowledge for Image Recognition through Quantitative Relativity Modeling and Deep Metric Learning [18.534970504136254]
画像クラスに関する階層的な事前知識を融合させるための,新しい深層計量学習手法を提案する。
画像分類を組み込んだ既存の深度学習は、主に画像クラス間の定性的相対性を利用している。
モデル潜在空間における量的相対性を利用して知識空間における距離を整列する新しい三重項損失関数項も提案され、提案された双対モダリティ融合法に組み込まれている。
論文 参考訳(メタデータ) (2024-07-30T07:24:33Z) - Annotation Cost-Efficient Active Learning for Deep Metric Learning Driven Remote Sensing Image Retrieval [3.2109665109975696]
ANNEALは、類似した、異種のイメージペアで構成された、小さくて情報的なトレーニングセットを作成することを目的としている。
不確実性と多様性の基準を組み合わせることにより、画像対の情報性を評価する。
このアノテート方式は、ランド・ユース・ランド・カバー・クラスラベルによるアノテート画像と比較して、アノテーションコストを著しく削減する。
論文 参考訳(メタデータ) (2024-06-14T15:08:04Z) - Introspective Deep Metric Learning [91.47907685364036]
本稿では,不確実性を考慮した画像比較のためのイントロスペクティブな深度学習フレームワークを提案する。
提案するIDMLフレームワークは,不確実性モデリングによるディープメトリック学習の性能を向上させる。
論文 参考訳(メタデータ) (2023-09-11T16:21:13Z) - Attributable Visual Similarity Learning [90.69718495533144]
本稿では、画像間のより正確で説明可能な類似度測定のための帰属的視覚類似度学習(AVSL)フレームワークを提案する。
人間の意味的類似性認知に動機づけられた2つの画像とグラフとの類似性を表現するために,一般化された類似性学習パラダイムを提案する。
CUB-200-2011、Cars196、Stanford Online Productsデータセットの実験は、既存の深い類似性学習方法よりも大幅に改善されたことを示している。
論文 参考訳(メタデータ) (2022-03-28T17:35:31Z) - Learning Contrastive Representation for Semantic Correspondence [150.29135856909477]
セマンティックマッチングのためのマルチレベルコントラスト学習手法を提案する。
画像レベルのコントラスト学習は、畳み込み特徴が類似したオブジェクト間の対応を見出すための鍵となる要素であることを示す。
論文 参考訳(メタデータ) (2021-09-22T18:34:14Z) - Deep Relational Metric Learning [84.95793654872399]
本稿では,画像クラスタリングと検索のためのディープリレーショナルメトリック学習フレームワークを提案する。
我々は、クラス間分布とクラス内分布の両方をモデル化するために、異なる側面から画像を特徴付ける特徴のアンサンブルを学ぶ。
広く使われているCUB-200-2011、Cars196、Stanford Online Productsデータセットの実験は、我々のフレームワークが既存の深層学習方法を改善し、非常に競争力のある結果をもたらすことを示した。
論文 参考訳(メタデータ) (2021-08-23T09:31:18Z) - Intrinsic Image Captioning Evaluation [53.51379676690971]
I2CE(Intrinsic Image Captioning Evaluation)と呼ばれる画像キャプションのための学習ベースメトリクスを提案する。
実験の結果,提案手法は頑健な性能を維持し,意味的類似表現やアライメントの少ない意味論に遭遇した場合,候補キャプションに対してより柔軟なスコアを与えることができた。
論文 参考訳(メタデータ) (2020-12-14T08:36:05Z) - DeepSim: Semantic similarity metrics for learned image registration [6.789370732159177]
画像登録のための意味的類似度尺度を提案する。
提案手法は,学習ベース登録モデルの最適化を促進する,データセット固有の特徴を学習する。
論文 参考訳(メタデータ) (2020-11-11T12:35:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。