PinnerFormer: Sequence Modeling for User Representation at Pinterest
- URL: http://arxiv.org/abs/2205.04507v1
- Date: Mon, 9 May 2022 18:26:51 GMT
- Title: PinnerFormer: Sequence Modeling for User Representation at Pinterest
- Authors: Nikil Pancha, Andrew Zhai, Jure Leskovec, Charles Rosenberg
- Abstract summary: We introduce PinnerFormer, a user representation trained to predict a user's future long-term engagement.
Unlike prior approaches, we adapt our modeling to a batch infrastructure via our new dense all-action loss.
We show that by doing so, we significantly close the gap between batch user embeddings that are generated once a day and realtime user embeddings generated whenever a user takes an action.
- Score: 60.335384724891746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sequential models have become increasingly popular in powering personalized
recommendation systems over the past several years. These approaches
traditionally model a user's actions on a website as a sequence to predict the
user's next action. While theoretically simplistic, these models are quite
challenging to deploy in production, commonly requiring streaming
infrastructure to reflect the latest user activity and potentially managing
mutable data for encoding a user's hidden state. Here we introduce
PinnerFormer, a user representation trained to predict a user's future
long-term engagement using a sequential model of a user's recent actions.
Unlike prior approaches, we adapt our modeling to a batch infrastructure via
our new dense all-action loss, modeling long-term future actions instead of
next action prediction. We show that by doing so, we significantly close the
gap between batch user embeddings that are generated once a day and realtime
user embeddings generated whenever a user takes an action. We describe our
design decisions via extensive offline experimentation and ablations and
validate the efficacy of our approach in A/B experiments showing substantial
improvements in Pinterest's user retention and engagement when comparing
PinnerFormer against our previous user representation. PinnerFormer is deployed
in production as of Fall 2021.
Related papers
- USE: Dynamic User Modeling with Stateful Sequence Models [26.74966828348815]
User Stateful Embedding (USE) generates user embeddings without the need for exhaustive reprocessing.
We introduce a novel training objective named future W-behavior prediction to transcend the limitations of next-token prediction.
We conduct experiments on 8 downstream tasks using Snapchat users' behavioral logs in both static (i.e., fixed user behavior sequences) and dynamic (i.e. periodically updated user behavior sequences) settings.
arXiv Detail & Related papers (2024-03-20T07:05:19Z) - TransAct: Transformer-based Realtime User Action Model for
Recommendation at Pinterest [17.247452803197362]
This paper presents Pinterest's ranking architecture for Homefeed.
We propose TransAct, a sequential model that extracts users' short-term preferences from their realtime activities.
We describe the results of ablation studies, the challenges we faced during productionization, and the outcome of an online A/B experiment.
arXiv Detail & Related papers (2023-05-31T23:45:29Z) - PUNR: Pre-training with User Behavior Modeling for News Recommendation [26.349183393252115]
News recommendation aims to predict click behaviors based on user behaviors.
How to effectively model the user representations is the key to recommending preferred news.
We propose an unsupervised pre-training paradigm with two tasks, i.e. user behavior masking and user behavior generation.
arXiv Detail & Related papers (2023-04-25T08:03:52Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
Sequential recommender models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform.
Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online.
Intent modeling is thus critical for understanding users and optimizing long-term user experience.
arXiv Detail & Related papers (2022-11-17T19:00:24Z) - DIGMN: Dynamic Intent Guided Meta Network for Differentiated User
Engagement Forecasting in Online Professional Social Platforms [32.70471436337077]
A major reason for the differences in user engagement patterns is that users have different intents.
We propose a Dynamic Guided Meta Network (DIGMN) which can explicitly model user intent varying with time.
Our method outperforms state-of-the-art baselines significantly.
arXiv Detail & Related papers (2022-10-22T09:57:27Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
We propose a novel framework to promote cascade size prediction by enhancing the user preference modeling.
Our end-to-end method makes the user activating process of information diffusion more adaptive and accurate.
arXiv Detail & Related papers (2022-04-18T09:25:06Z) - Modeling Dynamic User Preference via Dictionary Learning for Sequential
Recommendation [133.8758914874593]
Capturing the dynamics in user preference is crucial to better predict user future behaviors because user preferences often drift over time.
Many existing recommendation algorithms -- including both shallow and deep ones -- often model such dynamics independently.
This paper considers the problem of embedding a user's sequential behavior into the latent space of user preferences.
arXiv Detail & Related papers (2022-04-02T03:23:46Z) - Dynamic Graph Collaborative Filtering [64.87765663208927]
Dynamic recommendation is essential for recommender systems to provide real-time predictions based on sequential data.
Here we propose Dynamic Graph Collaborative Filtering (DGCF), a novel framework leveraging dynamic graphs to capture collaborative and sequential relations.
Our approach achieves higher performance when the dataset contains less action repetition, indicating the effectiveness of integrating dynamic collaborative information.
arXiv Detail & Related papers (2021-01-08T04:16:24Z) - Learning Transferrable Parameters for Long-tailed Sequential User
Behavior Modeling [70.64257515361972]
We argue that focusing on tail users could bring more benefits and address the long tails issue.
Specifically, we propose a gradient alignment and adopt an adversarial training scheme to facilitate knowledge transfer from the head to the tail.
arXiv Detail & Related papers (2020-10-22T03:12:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.