Slow Thinking for Sequential Recommendation
- URL: http://arxiv.org/abs/2504.09627v1
- Date: Sun, 13 Apr 2025 15:53:30 GMT
- Title: Slow Thinking for Sequential Recommendation
- Authors: Junjie Zhang, Beichen Zhang, Wenqi Sun, Hongyu Lu, Wayne Xin Zhao, Yu Chen, Ji-Rong Wen,
- Abstract summary: We present a novel slow thinking recommendation model, named STREAM-Rec.<n>Our approach is capable of analyzing historical user behavior, generating a multi-step, deliberative reasoning process, and delivering personalized recommendations.<n>In particular, we focus on two key challenges: (1) identifying the suitable reasoning patterns in recommender systems, and (2) exploring how to effectively stimulate the reasoning capabilities of traditional recommenders.
- Score: 88.46598279655575
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To develop effective sequential recommender systems, numerous methods have been proposed to model historical user behaviors. Despite the effectiveness, these methods share the same fast thinking paradigm. That is, for making recommendations, these methods typically encodes user historical interactions to obtain user representations and directly match these representations with candidate item representations. However, due to the limited capacity of traditional lightweight recommendation models, this one-step inference paradigm often leads to suboptimal performance. To tackle this issue, we present a novel slow thinking recommendation model, named STREAM-Rec. Our approach is capable of analyzing historical user behavior, generating a multi-step, deliberative reasoning process, and ultimately delivering personalized recommendations. In particular, we focus on two key challenges: (1) identifying the suitable reasoning patterns in recommender systems, and (2) exploring how to effectively stimulate the reasoning capabilities of traditional recommenders. To this end, we introduce a three-stage training framework. In the first stage, the model is pretrained on large-scale user behavior data to learn behavior patterns and capture long-range dependencies. In the second stage, we design an iterative inference algorithm to annotate suitable reasoning traces by progressively refining the model predictions. This annotated data is then used to fine-tune the model. Finally, in the third stage, we apply reinforcement learning to further enhance the model generalization ability. Extensive experiments validate the effectiveness of our proposed method.
Related papers
- Think Before Recommend: Unleashing the Latent Reasoning Power for Sequential Recommendation [20.965068290049057]
We propose textbfReaRec, the first inference-time computing framework for recommender systems.<n>ReaRec autoregressively feeds the sequence's last hidden state into the sequential recommender.<n>We introduce two lightweight reasoning-based learning methods, Ensemble Reasoning Learning (ERL) and Progressive Reasoning Learning (PRL)
arXiv Detail & Related papers (2025-03-28T17:59:03Z) - Long-Sequence Recommendation Models Need Decoupled Embeddings [49.410906935283585]
We identify and characterize a neglected deficiency in existing long-sequence recommendation models.<n>A single set of embeddings struggles with learning both attention and representation, leading to interference between these two processes.<n>We propose the Decoupled Attention and Representation Embeddings (DARE) model, where two distinct embedding tables are learned separately to fully decouple attention and representation.
arXiv Detail & Related papers (2024-10-03T15:45:15Z) - Pre-trained Language Model and Knowledge Distillation for Lightweight Sequential Recommendation [51.25461871988366]
We propose a sequential recommendation algorithm based on a pre-trained language model and knowledge distillation.
The proposed algorithm enhances recommendation accuracy and provide timely recommendation services.
arXiv Detail & Related papers (2024-09-23T08:39:07Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - Behavior-Dependent Linear Recurrent Units for Efficient Sequential Recommendation [18.75561256311228]
RecBLR is an Efficient Sequential Recommendation Model based on Behavior-Dependent Linear Recurrent Units.
Our model significantly enhances user behavior modeling and recommendation performance.
arXiv Detail & Related papers (2024-06-18T13:06:58Z) - Behavior-Contextualized Item Preference Modeling for Multi-Behavior Recommendation [30.715182718492244]
This paper introduces a novel approach, Behavior-Contextualized Item Preference Modeling (BCIPM) for multi-behavior recommendation.
Our proposed Behavior-Contextualized Item Preference Network discerns and learns users' specific item preferences within each behavior.
It then considers only those preferences relevant to the target behavior for final recommendations, significantly reducing noise from auxiliary behaviors.
arXiv Detail & Related papers (2024-04-28T12:46:36Z) - Fisher-Weighted Merge of Contrastive Learning Models in Sequential
Recommendation [0.0]
We are the first to apply the Fisher-Merging method to Sequential Recommendation, addressing and resolving practical challenges associated with it.
We demonstrate the effectiveness of our proposed methods, highlighting their potential to advance the state-of-the-art in sequential learning and recommendation systems.
arXiv Detail & Related papers (2023-07-05T05:58:56Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
Sequential recommender models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform.
Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online.
Intent modeling is thus critical for understanding users and optimizing long-term user experience.
arXiv Detail & Related papers (2022-11-17T19:00:24Z) - WSLRec: Weakly Supervised Learning for Neural Sequential Recommendation
Models [24.455665093145818]
We propose a novel model-agnostic training approach called WSLRec, which adopts a three-stage framework: pre-training, top-$k$ mining, intrinsic and fine-tuning.
WSLRec resolves the incompleteness problem by pre-training models on extra weak supervisions from model-free methods like BR and ItemCF, while resolving the inaccuracy problem by leveraging the top-$k$ mining to screen out reliable user-item relevance from weak supervisions for fine-tuning.
arXiv Detail & Related papers (2022-02-28T08:55:12Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.