論文の概要: Towards Intersectionality in Machine Learning: Including More
Identities, Handling Underrepresentation, and Performing Evaluation
- arxiv url: http://arxiv.org/abs/2205.04610v1
- Date: Tue, 10 May 2022 01:00:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-14 23:48:32.187432
- Title: Towards Intersectionality in Machine Learning: Including More
Identities, Handling Underrepresentation, and Performing Evaluation
- Title(参考訳): 機械学習の共通性に向けて: アイデンティティの増大、低表現の扱い、評価の実施
- Authors: Angelina Wang and Vikram V. Ramaswamy and Olga Russakovsky
- Abstract要約: 交差性を複数の属性として組み込んだ場合、機械学習パイプラインの3段階に沿って発生する疑問に対処する。
我々は、どの属性ラベルをトレーニングするかを選択する際に、経験的検証でドメイン知識を補うことを提唱する。
規範的含意を考慮せずにデータ不均衡技術の使用を警告する。
- 参考スコア(独自算出の注目度): 23.661509482014058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research in machine learning fairness has historically considered a single
binary demographic attribute; however, the reality is of course far more
complicated. In this work, we grapple with questions that arise along three
stages of the machine learning pipeline when incorporating intersectionality as
multiple demographic attributes: (1) which demographic attributes to include as
dataset labels, (2) how to handle the progressively smaller size of subgroups
during model training, and (3) how to move beyond existing evaluation metrics
when benchmarking model fairness for more subgroups. For each question, we
provide thorough empirical evaluation on tabular datasets derived from the US
Census, and present constructive recommendations for the machine learning
community. First, we advocate for supplementing domain knowledge with empirical
validation when choosing which demographic attribute labels to train on, while
always evaluating on the full set of demographic attributes. Second, we warn
against using data imbalance techniques without considering their normative
implications and suggest an alternative using the structure in the data. Third,
we introduce new evaluation metrics which are more appropriate for the
intersectional setting. Overall, we provide substantive suggestions on three
necessary (albeit not sufficient!) considerations when incorporating
intersectionality into machine learning.
- Abstract(参考訳): 機械学習の公平性の研究は歴史的に1つの2進分類属性と見なされてきたが、現実ははるかに複雑である。
本研究では,(1)データセットラベルとして含める属性,(2)モデルトレーニング中のサブグループの漸進的に小さいサイズを扱う方法,(3)ベンチマークモデルがより多くのサブグループに対して公平である場合に,既存の評価基準を超越する方法,の3つの段階において,機械学習パイプラインの3つの段階に沿って生じる疑問を提起する。
それぞれの質問に対して,米国国勢調査から派生した表型データセットの徹底した実証的評価を行い,機械学習コミュニティに構築的勧告を与える。
まず、どの属性ラベルをトレーニングするかを選択する際に、各属性の完全なセットを常に評価しながら、ドメイン知識を実証的検証で補うことを提唱する。
第2に、規範的含意を考慮せずにデータ不均衡技術の使用を警告し、データ構造を用いた代替案を提案する。
第3に,交差点設定に適した新しい評価指標を導入する。
全体として、機械学習に交叉性を組み込む際に必要となる3つの(十分ではない!
関連論文リスト
- Bridging the Gap: Protocol Towards Fair and Consistent Affect Analysis [24.737468736951374]
日々の生活における機械学習アルゴリズムの統合の増加は、その展開における公平性と公平性の重要性を浮き彫りにしている。
既存のデータベースと方法論は均一性に欠けており、バイアスのある評価につながっている。
この研究は、6つの感情的なデータベースを分析し、属性を注釈付けし、データベース分割のための共通のプロトコルを提案することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2024-05-10T22:40:01Z) - TIDE: Textual Identity Detection for Evaluating and Augmenting
Classification and Language Models [0.0]
機械学習モデルは、不公平で不均衡なデータセットから意図しないバイアスを永続することができる。
分類器と言語モデルにおけるテキストの公平性を改善するためのアプローチと組み合わせたデータセットを提案する。
我々は、IDコンテキストの可用性向上に使用できるIDアノテーションと拡張ツールを開発するために、TIDALを活用している。
論文 参考訳(メタデータ) (2023-09-07T21:44:42Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
クロスドメイン学習(CD)とモデルフェアネスの関係について検討する。
いくつかの人口集団にまたがる顔画像と医療画像のベンチマークと、分類とローカライゼーションタスクについて紹介する。
本研究は,3つの最先端フェアネスアルゴリズムとともに,14のCDアプローチをカバーし,前者が後者に勝ることを示す。
論文 参考訳(メタデータ) (2023-03-25T09:34:05Z) - A Survey of Learning on Small Data: Generalization, Optimization, and
Challenge [101.27154181792567]
ビッグデータの一般化能力を近似した小さなデータについて学ぶことは、AIの究極の目的の1つである。
この調査はPACフレームワークの下でのアクティブサンプリング理論に従い、小さなデータにおける学習の一般化誤差とラベルの複雑さを分析した。
効率的な小さなデータ表現の恩恵を受けるかもしれない複数のデータアプリケーションについて調査する。
論文 参考訳(メタデータ) (2022-07-29T02:34:19Z) - Assessing Demographic Bias Transfer from Dataset to Model: A Case Study
in Facial Expression Recognition [1.5340540198612824]
2つのメトリクスはデータセットの表現バイアスとステレオタイプバイアスに焦点をあて、もう1つはトレーニングされたモデルの残差バイアスに焦点を当てている。
本稿では、一般的なAffectnetデータセットに基づくFER問題に適用することで、メトリクスの有用性を示す。
論文 参考訳(メタデータ) (2022-05-20T09:40:42Z) - A survey on datasets for fairness-aware machine learning [6.962333053044713]
多くのフェアネス対応機械学習ソリューションが提案されている。
本稿では,フェアネスを意識した機械学習に使用される実世界のデータセットについて概説する。
データセットのバイアスと公平性についてより深く理解するために、探索分析を用いて興味深い関係を考察する。
論文 参考訳(メタデータ) (2021-10-01T16:54:04Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
機械学習におけるマルチグループフェアネスの研究(MultiFair)
この問題を解決するために,汎用的なエンドツーエンドのアルゴリズムフレームワークを提案する。
提案するフレームワークは多くの異なる設定に一般化可能である。
論文 参考訳(メタデータ) (2021-05-24T02:30:22Z) - Quantifying Learnability and Describability of Visual Concepts Emerging
in Representation Learning [91.58529629419135]
我々は、ディープニューラルネットワークによって自動的に発見された視覚的なグルーピングを特徴付ける方法を検討する。
本稿では、任意の画像グループ化の解釈可能性の定量化に使用できる視覚的学習可能性と記述可能性という2つの概念を紹介する。
論文 参考訳(メタデータ) (2020-10-27T18:41:49Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z) - A survey of bias in Machine Learning through the prism of Statistical
Parity for the Adult Data Set [5.277804553312449]
偏見を自動決定にどのように導入できるかを理解することの重要性を示す。
まず、公正学習問題、特に二項分類設定における数学的枠組みについて述べる。
そこで,本研究では,現実およびよく知られた成人所得データセットの標準差分効果指標を用いて,偏見の有無を定量化することを提案する。
論文 参考訳(メタデータ) (2020-03-31T14:48:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。