論文の概要: Automatic Detection of Microaneurysms in OCT Images Using Bag of
Features
- arxiv url: http://arxiv.org/abs/2205.04695v1
- Date: Tue, 10 May 2022 06:43:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-12 19:58:56.714615
- Title: Automatic Detection of Microaneurysms in OCT Images Using Bag of
Features
- Title(参考訳): 特徴量を用いたOCT画像における微小動脈瘤の自動検出
- Authors: Elahe Sadat Kazemi Nasab, Ramin Almasi, Bijan Shoushtarian, Ehsan
Golkar, Hossein Rabbani
- Abstract要約: 糖尿病による糖尿病網膜症(DR)は網膜血管の変化によって発生し、視覚障害を引き起こす。
Microaneurysms (MAs) はDRの早期臨床症状であり、時間的診断はDRの発達の初期段階における検出に有効である。
本研究は, DR患者20名を対象に, FA画像とOCT画像から収集したデータセットを用いて行った。
- 参考スコア(独自算出の注目度): 8.777674946755717
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Diabetic Retinopathy (DR) caused by diabetes occurs as a result of changes in
the retinal vessels and causes visual impairment. Microaneurysms (MAs) are the
early clinical signs of DR, whose timely diagnosis can help detecting DR in the
early stages of its development. It has been observed that MAs are more common
in the inner retinal layers compared to the outer retinal layers in eyes
suffering from DR. Optical Coherence Tomography (OCT) is a noninvasive imaging
technique that provides a cross-sectional view of the retina and it has been
used in recent years to diagnose many eye diseases. As a result, in this paper
has attempted to identify areas with MA from normal areas of the retina using
OCT images. This work is done using the dataset collected from FA and OCT
images of 20 patients with DR. In this regard, firstly Fluorescein Angiography
(FA) and OCT images were registered. Then the MA and normal areas were
separated and the features of each of these areas were extracted using the Bag
of Features (BOF) approach with Speeded-Up Robust Feature (SURF) descriptor.
Finally, the classification process was performed using a multilayer perceptron
network. For each of the criteria of accuracy, sensitivity, specificity, and
precision, the obtained results were 96.33%, 97.33%, 95.4%, and 95.28%,
respectively. Utilizing OCT images to detect MAsautomatically is a new idea and
the results obtained as preliminary research in this field are promising .
- Abstract(参考訳): 糖尿病による糖尿病網膜症(DR)は網膜血管の変化によって発生し、視覚障害を引き起こす。
Microaneurysms (MAs) はDRの早期臨床症状であり、時間的診断はDRの発達の初期段階における検出に有効である。
光コヒーレンス断層撮影(oct)は非侵襲的イメージング技術であり、網膜の断面像を提供しており、近年では多くの眼疾患の診断に使用されている。
そこで本研究では,OCT画像を用いて網膜の正常領域からMA領域を同定する試みを行った。
本研究は, DR患者20例の FA および OCT 画像から収集したデータセットを用いて行われ, はじめに FA と OCT 画像が登録された。
そして,ma領域と正規領域を分離し,これらの領域の特徴をshr(speeded up robust feature)ディスクリプタを用いたbag of features (bof) アプローチで抽出した。
最後に,多層パーセプトロンネットワークを用いて分類処理を行った。
精度,感度,特異度,精度の基準はそれぞれ96.33%,97.33%,95.4%,95.28%であった。
oct画像を用いた自動検出は新しいアイデアであり,本分野における予備研究として得られた結果は有望である。
関連論文リスト
- Harnessing the power of longitudinal medical imaging for eye disease prognosis using Transformer-based sequence modeling [49.52787013516891]
今回提案した Longitudinal Transformer for Survival Analysis (LTSA, Longitudinal Transformer for Survival Analysis, LTSA) は, 縦断的医用画像から動的疾患の予後を予測できる。
時間的注意分析により、最新の画像は典型的には最も影響力のあるものであるが、以前の画像は追加の予後に価値があることが示唆された。
論文 参考訳(メタデータ) (2024-05-14T17:15:28Z) - OCTDL: Optical Coherence Tomography Dataset for Image-Based Deep Learning Methods [34.13887472397715]
本研究は,2000枚以上の OCT 画像からなるオープンアクセス型 OCT データセット (OCTDL) を提案する。
このデータセットは、加齢関連黄斑変性症(AMD)、糖尿病黄斑浮腫(DME)、網膜膜(ERM)、網膜動脈閉塞症(RAO)、網膜静脈閉塞症(RVO)、およびVID(Vitreomacular Interface Disease)患者のOCT記録からなる。
論文 参考訳(メタデータ) (2023-12-13T16:18:40Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Strategy for Rapid Diabetic Retinopathy Exposure Based on Enhanced
Feature Extraction Processing [0.0]
本研究の目的は, 糖尿病網膜症の診断を改善するために, 時間的DR識別のための深層学習モデルを開発することである。
提案モデルでは,早期に網膜画像から様々な病変を検出する。
論文 参考訳(メタデータ) (2023-05-08T14:17:33Z) - nnUNet RASPP for Retinal OCT Fluid Detection, Segmentation and
Generalisation over Variations of Data Sources [25.095695898777656]
我々は、複数のデバイスベンダーの画像間で一貫した高パフォーマンスを持つnnUNetの2つの変種を提案する。
このアルゴリズムはMICCAI 2017 RETOUCHチャレンジデータセットで検証された。
実験の結果,我々のアルゴリズムは最先端のアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2023-02-25T23:47:23Z) - A deep learning model for classification of diabetic retinopathy in eye
fundus images based on retinal lesion detection [0.0]
糖尿病網膜症(英: Diabetic retinopathy, DR)は、糖尿病が網膜に影響を及ぼす結果である。
失明の原因は、未診断で治療を受けていない場合である。
本稿では眼底画像の自動DR分類モデルを提案する。
論文 参考訳(メタデータ) (2021-10-14T22:04:59Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z) - Segmentation of Retinal Low-Cost Optical Coherence Tomography Images
using Deep Learning [2.571523045125397]
治療の必要性は、病原性OCTベースのバイオマーカーの存在または変化によって決定される。
現在の治療スキームのモニタリング頻度は、個別に患者に適応していないため、しばしば不十分である。
ホームモニタリングOCTシステムの重要な要件の1つは、病理学的変化を自動的に検出し定量化するコンピュータ支援診断である。
論文 参考訳(メタデータ) (2020-01-23T12:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。