論文の概要: Neural Networks with Different Initialization Methods for Depression
Detection
- arxiv url: http://arxiv.org/abs/2205.04792v1
- Date: Tue, 10 May 2022 10:36:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-13 17:52:06.332233
- Title: Neural Networks with Different Initialization Methods for Depression
Detection
- Title(参考訳): 抑うつ検出のための初期化法が異なるニューラルネットワーク
- Authors: Tianle Yang
- Abstract要約: うつ病は世界中の様々な病気の主要な原因である。
近年の研究では、身体的特徴がうつ病の診断に大きく寄与していることが報告されている。
ニューラルネットワークは、物理的特性から抑うつを予測するために構築される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As a common mental disorder, depression is a leading cause of various
diseases worldwide. Early detection and treatment of depression can
dramatically promote remission and prevent relapse. However, conventional ways
of depression diagnosis require considerable human effort and cause economic
burden, while still being prone to misdiagnosis. On the other hand, recent
studies report that physical characteristics are major contributors to the
diagnosis of depression, which inspires us to mine the internal relationship by
neural networks instead of relying on clinical experiences. In this paper,
neural networks are constructed to predict depression from physical
characteristics. Two initialization methods are examined - Xaiver and Kaiming
initialization. Experimental results show that a 3-layers neural network with
Kaiming initialization achieves $83\%$ accuracy.
- Abstract(参考訳): 一般的な精神疾患として、うつ病は世界中の様々な疾患の主要な原因である。
うつ病の早期発見と治療は、寛解を劇的に促進し、再発を防ぐ。
しかし、従来のうつ病の診断にはかなりの人的努力が必要であり、経済的な負担がかかる。
一方、最近の研究では、身体的特徴がうつ病の診断に大きく寄与していることが報告されており、臨床経験に頼らず、ニューラルネットワークによる内的関係を掘り下げるきっかけとなっている。
本稿では,物理特性から抑うつを予測するニューラルネットワークを構築した。
xaiverとkaimingの2つの初期化法を検討した。
実験結果から,カイミング初期化を用いた3層ニューラルネットワークの精度は83\%であった。
関連論文リスト
- A Novel Audio-Visual Information Fusion System for Mental Disorders Detection [6.3344832182228]
メンタル障害は、世界的な医療課題に最も貢献している。
本稿では,精神疾患の感情表現機能に着目し,音声・視覚情報入力に基づくマルチモーダル精神障害診断システムを導入する。
提案システムは空間的時間的注意ネットワークをベースとし,より計算力の低い事前学習音声認識ネットワークを用いて,より優れた結果を得るためにビデオ認識モジュールを微調整する。
論文 参考訳(メタデータ) (2024-09-03T19:16:36Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
本研究では,認知的歪み検出の課題について検討し,思考の早期発見(DoT)を提案する。
DoTは、事実と思考を分離するための主観的評価、思考と矛盾する推論プロセスを引き出すための対照的な推論、認知スキーマを要約するスキーマ分析という3つの段階を通して、患者のスピーチの診断を行う。
実験により、DoTは認知的歪み検出のためのChatGPTよりも大幅に改善され、一方で人間の専門家が承認した高品質な合理性を生成することが示された。
論文 参考訳(メタデータ) (2023-10-11T02:47:21Z) - What Symptoms and How Long? An Interpretable AI Approach for Depression
Detection in Social Media [0.5156484100374058]
うつ病は最も一般的で深刻な精神疾患であり、重大な財政的・社会的影響をもたらす。
本研究は、ソーシャルメディアにおける抑うつ検出のための新しい解釈可能な深層学習モデルを用いて、IS文献に寄与する。
論文 参考訳(メタデータ) (2023-05-18T20:15:04Z) - Deep learning reveals the common spectrum underlying multiple brain
disorders in youth and elders from brain functional networks [53.257804915263165]
ヒトの初期および後期の脳障害は、脳機能における病理学的変化を共有する可能性がある。
病理的共通性に関する神経画像データによる重要な証拠はいまだ発見されていない。
多地点機能磁気共鳴画像データを用いたディープラーニングモデルを構築し、健康的な制御から5つの異なる脳障害を分類する。
論文 参考訳(メタデータ) (2023-02-23T09:22:05Z) - Handwriting and Drawing for Depression Detection: A Preliminary Study [53.11777541341063]
精神健康に対する短期的コビデンスの影響は、不安や抑うつ症状の顕著な増加であった。
本研究の目的は、健康な人とうつ病患者を識別するために、オンライン手書き・図面解析という新しいツールを使用することである。
論文 参考訳(メタデータ) (2023-02-05T22:33:49Z) - Promises and pitfalls of deep neural networks in neuroimaging-based
psychiatric research [0.9449650062296824]
ディープニューラルネットワーク、特に畳み込みニューラルネットワークは、医療画像の強力なツールへと進化してきた。
ここでは、まず、方法論的鍵概念と結果の方法論的約束について紹介する。
神経画像に基づく精神医学研究における最近の応用を振り返り、現在の課題について論じる。
論文 参考訳(メタデータ) (2023-01-20T12:05:59Z) - NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical
Development Patterns of Preterm Infants [73.85768093666582]
我々はNeuroExplainerと呼ばれる説明可能な幾何学的深層ネットワークを提案する。
NeuroExplainerは、早産に伴う幼児の皮質発達パターンの解明に使用される。
論文 参考訳(メタデータ) (2023-01-01T12:48:12Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
うつ病は最も多い精神疾患の1つであり、世界中の年齢の何百万人もの人々に影響を与えている。
機械学習技術は、早期介入と治療のためのうつ病の自動検出と予測を可能にしている。
本稿では、この課題に対処するために、2つの補助的タスクでうつ病分類を共同最適化する、新しいディープマルチタスクリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-05T05:14:14Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
グラディエント・スターベーションは、タスクに関連する機能のサブセットのみをキャプチャすることで、クロスエントロピー損失を最小化するときに発生する。
この研究は、ニューラルネットワークにおけるそのような特徴不均衡の出現に関する理論的説明を提供する。
論文 参考訳(メタデータ) (2020-11-18T18:52:08Z) - Examining the Role of Mood Patterns in Predicting Self-Reported
Depressive symptoms [4.564132389935269]
うつ病は世界中で障害の主な原因である。
ソーシャルメディア投稿からうつ病信号を検出する最初の試みは、有望な結果を示している。
本研究では,ソーシャルメディア利用者を対象とした「ムードプロファイル」を構築し,うつ病の症状を検出するための現在の技術を強化することを試みる。
論文 参考訳(メタデータ) (2020-06-14T12:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。