Universal Caching
- URL: http://arxiv.org/abs/2205.04860v1
- Date: Tue, 10 May 2022 13:00:10 GMT
- Title: Universal Caching
- Authors: Ativ Joshi and Abhishek Sinha
- Abstract summary: We investigate a stronger notion of regret minimization in the context of an online caching problem.
We propose an efficient online caching policy with an adaptive sub-linear regret bound.
To the best of our knowledge, this is the first data-dependent regret bound known for the universal caching problem.
- Score: 8.208569626646034
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the learning literature, the performance of an online policy is commonly
measured in terms of the static regret metric, which compares the cumulative
loss of an online policy to that of an optimal benchmark in hindsight. In the
definition of static regret, the benchmark policy remains fixed throughout the
time horizon. Naturally, the resulting regret bounds become loose in
non-stationary settings where fixed benchmarks often suffer from poor
performance. In this paper, we investigate a stronger notion of regret
minimization in the context of an online caching problem. In particular, we
allow the action of the offline benchmark at any round to be decided by a
finite state predictor containing arbitrarily many states. Using ideas from the
universal prediction literature in information theory, we propose an efficient
online caching policy with an adaptive sub-linear regret bound. To the best of
our knowledge, this is the first data-dependent regret bound known for the
universal caching problem. We establish this result by combining a
recently-proposed online caching policy with an incremental parsing algorithm,
e.g., Lempel-Ziv '78. Our methods also yield a simpler learning-theoretic proof
of the improved regret bound as opposed to the more involved and
problem-specific combinatorial arguments used in the earlier works.
Related papers
- An Online Gradient-Based Caching Policy with Logarithmic Complexity and Regret Guarantees [13.844896723580858]
We introduce a new variant of the gradient-based online caching policy that achieves groundbreaking logarithmic computational complexity.
This advancement allows us to test the policy on large-scale, real-world traces featuring millions of requests and items.
arXiv Detail & Related papers (2024-05-02T13:11:53Z) - Improving Adaptive Online Learning Using Refined Discretization [44.646191058243645]
We study unconstrained Online Linear Optimization with Lipschitz losses.
Motivated by the pursuit of instance optimality, we propose a new algorithm.
Central to these results is a continuous time approach to online learning.
arXiv Detail & Related papers (2023-09-27T21:54:52Z) - Iteratively Refined Behavior Regularization for Offline Reinforcement
Learning [57.10922880400715]
In this paper, we propose a new algorithm that substantially enhances behavior-regularization based on conservative policy iteration.
By iteratively refining the reference policy used for behavior regularization, conservative policy update guarantees gradually improvement.
Experimental results on the D4RL benchmark indicate that our method outperforms previous state-of-the-art baselines in most tasks.
arXiv Detail & Related papers (2023-06-09T07:46:24Z) - Improved Online Conformal Prediction via Strongly Adaptive Online
Learning [86.4346936885507]
We develop new online conformal prediction methods that minimize the strongly adaptive regret.
We prove that our methods achieve near-optimal strongly adaptive regret for all interval lengths simultaneously.
Experiments show that our methods consistently obtain better coverage and smaller prediction sets than existing methods on real-world tasks.
arXiv Detail & Related papers (2023-02-15T18:59:30Z) - Optimistic No-regret Algorithms for Discrete Caching [6.182368229968862]
We take a systematic look at the problem of storing whole files in a cache with limited capacity in the context of optimistic learning.
We provide a universal lower bound for prediction-assisted online caching and design a suite of policies with a range of performance-complexity trade-offs.
Our results substantially improve upon all recently-proposed online caching policies, which, being unable to exploit the oracle predictions, offer only $O(sqrtT)$ regret.
arXiv Detail & Related papers (2022-08-15T09:18:41Z) - Online Caching with no Regret: Optimistic Learning via Recommendations [15.877673959068458]
We build upon the Follow-the-Regularized-Leader (FTRL) framework to include predictions for the file requests.
We extend the framework to learn and utilize the best request predictor in cases where many are available.
We prove that the proposed optimistic learning caching policies can achieve sub-zero performance loss (regret) for perfect predictions.
arXiv Detail & Related papers (2022-04-20T09:29:47Z) - Adaptivity and Non-stationarity: Problem-dependent Dynamic Regret for Online Convex Optimization [70.4342220499858]
We introduce novel online algorithms that can exploit smoothness and replace the dependence on $T$ in dynamic regret with problem-dependent quantities.
Our results are adaptive to the intrinsic difficulty of the problem, since the bounds are tighter than existing results for easy problems and safeguard the same rate in the worst case.
arXiv Detail & Related papers (2021-12-29T02:42:59Z) - Non-stationary Online Learning with Memory and Non-stochastic Control [71.14503310914799]
We study the problem of Online Convex Optimization (OCO) with memory, which allows loss functions to depend on past decisions.
In this paper, we introduce dynamic policy regret as the performance measure to design algorithms robust to non-stationary environments.
We propose a novel algorithm for OCO with memory that provably enjoys an optimal dynamic policy regret in terms of time horizon, non-stationarity measure, and memory length.
arXiv Detail & Related papers (2021-02-07T09:45:15Z) - Strongly Adaptive OCO with Memory [49.319621885036035]
We propose the first strongly adaptive algorithm for online learning with memory.
Our algorithm results in a strongly adaptive regret bound for the control of linear time-varying systems.
arXiv Detail & Related papers (2021-02-02T17:26:08Z) - Temporal Variability in Implicit Online Learning [15.974402990630402]
tightest regret analyses only show marginal improvements over Online Mirror Descent.
We prove a novel static regret bound that depends on the temporal variability of the sequence of loss functions.
We present an adaptive algorithm that achieves this regret bound without prior knowledge of the temporal variability.
arXiv Detail & Related papers (2020-06-12T22:50:34Z) - Minimizing Dynamic Regret and Adaptive Regret Simultaneously [60.17824125301273]
We propose novel online algorithms that are able to minimize the dynamic regret and adaptive regret simultaneously.
Our theoretical guarantee is even stronger in the sense that one algorithm is able to minimize the dynamic regret over any interval.
arXiv Detail & Related papers (2020-02-06T03:32:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.