Control of $^{164}$Dy Bose-Einstein condensate phases and dynamics with
dipolar anisotropy
- URL: http://arxiv.org/abs/2205.05193v2
- Date: Sat, 3 Sep 2022 15:18:24 GMT
- Title: Control of $^{164}$Dy Bose-Einstein condensate phases and dynamics with
dipolar anisotropy
- Authors: S. Halder, K. Mukherjee, S. I. Mistakidis, S. Das, P. G. Kevrekidis,
P. K. Panigrahi, S. Majumder and H. R. Sadeghpour
- Abstract summary: We investigate the quench dynamics of quasi-one and two dimensional dipolar Bose-Einstein condensates (dBEC) of $164$Dy atoms under the influence of a fast rotating magnetic field.
We account for quantum fluctuations, critical to formation of exotic quantum droplet and supersolid phases in the extended Gross-Pitaevskii formalism.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We investigate the quench dynamics of quasi-one and two dimensional dipolar
Bose-Einstein condensates (dBEC) of $^{164}$Dy atoms under the influence of a
fast rotating magnetic field. The magnetic field thus controls both the
magnitude and sign of the dipolar potential. We account for quantum
fluctuations, critical to formation of exotic quantum droplet and supersolid
phases in the extended Gross-Pitaevskii formalism, which includes the so-called
Lee-Huang-Yang (LHY) correction. An analytical variational ansatz allows us to
obtain the phase diagrams of the superfluid and droplet phases. The crossover
from the superfluid to the supersolid phase and to single and droplet arrays is
probed with particle number and dipolar interaction. The dipolar strength is
tuned by rotating the magnetic field with subsequent effects on phase
boundaries. Following interaction quenches across the aforementioned phases, we
monitor the dynamical formation of supersolid clusters or droplet lattices. We
include losses due to three-body recombination over the crossover regime, where
the three-body recombination rate coefficient scales with the fourth power of
the scattering length ($a_s$) or the dipole length ($a_{dd}$). For fixed values
of the dimensionless parameter, $\epsilon_{dd} = a_{dd}/a_s$, tuning the
dipolar anisotropy leads to an enhancement of the droplet lifetimes.
Related papers
- Unifying Floquet theory of longitudinal and dispersive readout [33.7054351451505]
We devise a Floquet theory of longitudinal and dispersive readout in circuit QED.
We apply them to superconducting and spin-hybrid cQED systems.
arXiv Detail & Related papers (2024-07-03T18:00:47Z) - Quantum phases of hardcore bosons with repulsive dipolar density-density interactions on two-dimensional lattices [0.0]
bosons dynamics is described by the extended-Bose-Hubbard Hamiltonian on a two-dimensional lattice.
We consider three different lattice geometries: square, honeycomb, and triangular.
Our results are of immediate relevance for experimental realisations of self-organised crystalline ordering patterns in analogue quantum simulators.
arXiv Detail & Related papers (2023-11-17T16:35:02Z) - Superfluid phase transition of nanoscale-confined helium-3 [0.0]
We investigate the superfluid phase transition of helium-3 under nanoscale confinement.
The quasi two-dimensional superfluid is described by a reduced 3x2 complex matrix.
We show that mean-field theory predicts precisely two energetically degenerate superfluid orders to emerge at the transition.
arXiv Detail & Related papers (2023-07-17T19:45:54Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Superfluid-droplet crossover in a binary boson mixture on a ring: Exact
diagonalization solutions for few-particle systems in one dimension [0.0]
We investigate the formation of self-bound quantum droplets in a one-dimensional binary mixture of bosonic atoms.
Results show a remarkable agreement between the few-body regime and the thermodynamic limit in one dimension.
arXiv Detail & Related papers (2023-02-01T11:45:45Z) - Phase diagram of Rydberg-dressed atoms on two-leg triangular ladders [50.591267188664666]
We investigate the phase diagram of hard-core bosons in a triangular ladder with next-to-nearest-neighbor interaction along each leg.
For weak interactions, Abelian bosonization predicts a spin density wave and a fully gapless Luttinger liquid phase.
The competition with the zigzag interaction generates a charge density wave, a 'polarized holonic' phase, and a crystalline phase at the filling 2/5.
arXiv Detail & Related papers (2022-07-01T12:49:04Z) - Quantum critical behavior of entanglement in lattice bosons with
cavity-mediated long-range interactions [0.0]
We analyze the ground-state entanglement entropy of the extended Bose-Hubbard model with infinite-range interactions.
This model describes the low-energy dynamics of ultracold bosons tightly bound to an optical lattice and dispersively coupled to a cavity mode.
arXiv Detail & Related papers (2022-04-16T04:10:57Z) - Enhanced superconductivity and various edge modes in modulated $t$-$J$
chains [6.0413288393037305]
We numerically investigate the ground state of the extended $t$-$J$ Hamiltonian with periodic local modulations in one dimension.
We obtain a rich ground-state phase diagram consisting of the metallic state, the superconducting state, the phase separation, and insulating states at commensurate fillings.
arXiv Detail & Related papers (2021-11-26T19:00:18Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.