論文の概要: Developing cooperative policies for multi-stage reinforcement learning
tasks
- arxiv url: http://arxiv.org/abs/2205.05230v1
- Date: Wed, 11 May 2022 01:31:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-13 07:52:03.445565
- Title: Developing cooperative policies for multi-stage reinforcement learning
tasks
- Title(参考訳): 多段階強化学習のための協調政策の開発
- Authors: Jordan Erskine, Chris Lehnert
- Abstract要約: 多くの階層的強化学習アルゴリズムは、より高い推論レベルでタスクを解決するために、一連の独立したスキルを基礎として利用している。
本稿では,連続エージェントが長期水平多段階タスクを協調的に解決できる協調的協調政策(CCP)手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many hierarchical reinforcement learning algorithms utilise a series of
independent skills as a basis to solve tasks at a higher level of reasoning.
These algorithms don't consider the value of using skills that are cooperative
instead of independent. This paper proposes the Cooperative Consecutive
Policies (CCP) method of enabling consecutive agents to cooperatively solve
long time horizon multi-stage tasks. This method is achieved by modifying the
policy of each agent to maximise both the current and next agent's critic.
Cooperatively maximising critics allows each agent to take actions that are
beneficial for its task as well as subsequent tasks. Using this method in a
multi-room maze domain and a peg in hole manipulation domain, the cooperative
policies were able to outperform a set of naive policies, a single agent
trained across the entire domain, as well as another sequential HRL algorithm.
- Abstract(参考訳): 多くの階層的強化学習アルゴリズムは、より高い推論レベルでタスクを解決するために、一連の独立したスキルを基礎として利用している。
これらのアルゴリズムは、独立ではなく協力的なスキルを使う価値を考慮しない。
本稿では,連続エージェントが長期水平多段階タスクを協調的に解決できる協調的協調政策(CCP)手法を提案する。
この方法は、各エージェントのポリシーを変更して、現在のエージェントと次のエージェントの批評家の両方を最大化する。
批評家を協調的に最大化することで、各エージェントはそのタスクに有益な行動を取ることができる。
この手法をマルチルームmazeドメインとpeg in hole manipulationドメインで使用することにより,協調ポリシは,複数のナイーブポリシ,ドメイン全体でトレーニングされた1つのエージェント,その他の逐次hrlアルゴリズムを上回ることができた。
関連論文リスト
- Approximate Linear Programming for Decentralized Policy Iteration in Cooperative Multi-agent Markov Decision Processes [5.842054972839244]
我々は,mエージェントを含む協調的マルチエージェントマルコフ決定過程について考察する。
マルチエージェント設定のポリシーイテレーションプロセスでは、アクションの数はエージェントの数とともに指数関数的に増加する。
本稿では,関数近似を用いた近似線形計画法を用いて,近似分散型ポリシー反復アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-20T14:14:13Z) - Policy Diversity for Cooperative Agents [8.689289576285095]
マルチエージェント強化学習は、タスクを完了するための最適なチーム協調政策を見つけることを目的としている。
協調には複数の異なる方法があり、通常はドメインの専門家が非常に必要とします。
残念なことに、マルチエージェントドメイン用に特別に設計された効果的なポリシーの多様性アプローチが欠如している。
論文 参考訳(メタデータ) (2023-08-28T05:23:16Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
本稿では,各エージェントのローカルポリシーをバニラPPOと同様に更新するマルチエージェントPPOアルゴリズムを提案する。
マルコフゲームにおける標準正則条件と問題依存量により、我々のアルゴリズムはサブリニアレートで大域的最適ポリシーに収束することを示す。
論文 参考訳(メタデータ) (2023-05-08T16:20:03Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
本稿では,MARL(Multi-Agent Reinforcement Learning)に対する新しいアプローチを提案する。
これは、協調的なタスク分解と、サブタスクの構造をコードする報酬機(RM)の学習を組み合わせる。
提案手法は、部分的に観測可能な環境下での報酬の非マルコフ的性質に対処するのに役立つ。
論文 参考訳(メタデータ) (2023-03-24T15:12:28Z) - RACA: Relation-Aware Credit Assignment for Ad-Hoc Cooperation in
Multi-Agent Deep Reinforcement Learning [55.55009081609396]
本稿では、アドホックな協調シナリオにおいてゼロショットの一般化を実現するRACA(Relation-Aware Credit Assignment)と呼ばれる新しい手法を提案する。
RACAは、エージェント間のトポロジ構造を符号化するために、グラフベースのエンコーダ関係を利用する。
提案手法は,StarCraftIIマイクロマネジメントベンチマークとアドホック協調シナリオのベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2022-06-02T03:39:27Z) - Constructing a Good Behavior Basis for Transfer using Generalized Policy
Updates [63.58053355357644]
そこで我々は,優れた政策集合を学習する問題を考察し,組み合わせることで,目に見えない多種多様な強化学習タスクを解くことができることを示した。
理論的には、独立したポリシーのセットと呼ぶ、特定の多様なポリシーのセットにアクセスできることによって、ハイレベルなパフォーマンスを即時に達成できることが示される。
論文 参考訳(メタデータ) (2021-12-30T12:20:46Z) - Decentralized Multi-Agent Reinforcement Learning: An Off-Policy Method [6.261762915564555]
本稿では,分散型マルチエージェント強化学習(MARL)の問題について議論する。
我々の設定では、グローバルステート、アクション、報酬は、完全に監視可能であると仮定され、一方、ローカルポリシーは各エージェントによってプライバシとして保護されているため、他の人と共有することはできない。
政策評価と政策改善のアルゴリズムはそれぞれ、離散的かつ連続的な状態-行動空間マルコフ決定プロセス(MDP)のために設計されている。
論文 参考訳(メタデータ) (2021-10-31T09:08:46Z) - Scalable, Decentralized Multi-Agent Reinforcement Learning Methods
Inspired by Stigmergy and Ant Colonies [0.0]
分散型マルチエージェント学習と計画に対する新しいアプローチを検討する。
特に、この方法はアリコロニーの凝集、協調、行動に触発されている。
このアプローチは、単一エージェントRLと、マルチエージェントパス計画と環境修正のためのアリコロニーに触発された分散型のスティグメロジカルアルゴリズムを組み合わせたものである。
論文 参考訳(メタデータ) (2021-05-08T01:04:51Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
我々はUniversal Value Exploration(UneVEn)と呼ばれる新しいMARLアプローチを提案する。
UneVEnは、一連の関連するタスクと、普遍的な後継機能の線形分解を同時に学習する。
一連の探索ゲームにおける実証的な結果、エージェント間の重要な調整を必要とする協調捕食・捕食作業への挑戦、およびStarCraft IIのマイクロマネジメントベンチマークは、UneVEnが他の最先端のMARLメソッドが失敗するタスクを解決できることを示している。
論文 参考訳(メタデータ) (2020-10-06T19:08:47Z) - Developing cooperative policies for multi-stage tasks [0.0]
本稿では,協調型ソフトアクター批判(CSAC)手法を提案する。
CSACは非協調的な政策よりも少なくとも20%高い成功率を達成し、単一エージェントの少なくとも4倍の速さで解に収束した。
論文 参考訳(メタデータ) (2020-07-01T03:32:14Z) - FACMAC: Factored Multi-Agent Centralised Policy Gradients [103.30380537282517]
FACtored Multi-Agent Centralized Policy gradients (FACMAC)を提案する。
離散的および連続的な行動空間における協調的マルチエージェント強化学習のための新しい手法である。
我々は,マルチエージェント粒子環境の変動に対するFACMAC,新しいマルチエージェント MuJoCo ベンチマーク,およびStarCraft II マイクロマネジメントタスクの挑戦的セットについて評価した。
論文 参考訳(メタデータ) (2020-03-14T21:29:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。