A Continual Deepfake Detection Benchmark: Dataset, Methods, and
Essentials
- URL: http://arxiv.org/abs/2205.05467v1
- Date: Wed, 11 May 2022 13:07:19 GMT
- Title: A Continual Deepfake Detection Benchmark: Dataset, Methods, and
Essentials
- Authors: Chuqiao Li, Zhiwu Huang, Danda Pani Paudel, Yabin Wang, Mohamad
Shahbazi, Xiaopeng Hong, Luc Van Gool
- Abstract summary: This paper suggests a continual deepfake detection benchmark (CDDB) over a new collection of deepfakes from both known and unknown generative models.
We exploit multiple approaches to adapt multiclass incremental learning methods, commonly used in the continual visual recognition, to the continual deepfake detection problem.
- Score: 97.69553832500547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There have been emerging a number of benchmarks and techniques for the
detection of deepfakes. However, very few works study the detection of
incrementally appearing deepfakes in the real-world scenarios. To simulate the
wild scenes, this paper suggests a continual deepfake detection benchmark
(CDDB) over a new collection of deepfakes from both known and unknown
generative models. The suggested CDDB designs multiple evaluations on the
detection over easy, hard, and long sequence of deepfake tasks, with a set of
appropriate measures. In addition, we exploit multiple approaches to adapt
multiclass incremental learning methods, commonly used in the continual visual
recognition, to the continual deepfake detection problem. We evaluate several
methods, including the adapted ones, on the proposed CDDB. Within the proposed
benchmark, we explore some commonly known essentials of standard continual
learning. Our study provides new insights on these essentials in the context of
continual deepfake detection. The suggested CDDB is clearly more challenging
than the existing benchmarks, which thus offers a suitable evaluation avenue to
the future research. Our benchmark dataset and the source code will be made
publicly available.
Related papers
- Conditioned Prompt-Optimization for Continual Deepfake Detection [11.634681724245933]
This paper introduces Prompt2Guard, a novel solution for photorealistic-free continual deepfake detection of images.
We leverage a prediction ensembling technique with read-only prompts, mitigating the need for multiple forward passes.
Our method exploits a text-prompt conditioning tailored to deepfake detection, which we demonstrate is beneficial in our setting.
arXiv Detail & Related papers (2024-07-31T12:22:57Z) - DF40: Toward Next-Generation Deepfake Detection [62.073997142001424]
existing works identify top-notch detection algorithms and models by adhering to the common practice: training detectors on one specific dataset and testing them on other prevalent deepfake datasets.
But can these stand-out "winners" be truly applied to tackle the myriad of realistic and diverse deepfakes lurking in the real world?
We construct a highly diverse deepfake detection dataset called DF40, which comprises 40 distinct deepfake techniques.
arXiv Detail & Related papers (2024-06-19T12:35:02Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Explicit Correlation Learning for Generalizable Cross-Modal Deepfake Detection [33.20064862916194]
This paper aims to learn potential cross-modal correlation to enhance deepfake detection towards various generation scenarios.
Our approach introduces a correlation distillation task, which models the inherent cross-modal correlation based on content information.
We present the Cross-Modal Deepfake dataset with four generation methods to evaluate the detection of diverse cross-modal deepfakes.
arXiv Detail & Related papers (2024-04-30T00:25:44Z) - Facial Forgery-based Deepfake Detection using Fine-Grained Features [7.378937711027777]
Facial forgery by deepfakes has caused major security risks and raised severe societal concerns.
We formulate deepfake detection as a fine-grained classification problem and propose a new fine-grained solution to it.
Our method is based on learning subtle and generalizable features by effectively suppressing background noise and learning discriminative features at various scales for deepfake detection.
arXiv Detail & Related papers (2023-10-10T21:30:05Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - DeepfakeBench: A Comprehensive Benchmark of Deepfake Detection [55.70982767084996]
A critical yet frequently overlooked challenge in the field of deepfake detection is the lack of a standardized, unified, comprehensive benchmark.
We present the first comprehensive benchmark for deepfake detection, called DeepfakeBench, which offers three key contributions.
DeepfakeBench contains 15 state-of-the-art detection methods, 9CL datasets, a series of deepfake detection evaluation protocols and analysis tools, as well as comprehensive evaluations.
arXiv Detail & Related papers (2023-07-04T01:34:41Z) - TAR: Generalized Forensic Framework to Detect Deepfakes using Weakly
Supervised Learning [17.40885531847159]
Deepfakes have become a critical social problem, and detecting them is of utmost importance.
In this work, we introduce a practical digital forensic tool to detect different types of deepfakes simultaneously.
We develop an autoencoder-based detection model with Residual blocks and sequentially perform transfer learning to detect different types of deepfakes simultaneously.
arXiv Detail & Related papers (2021-05-13T07:31:08Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) aims to detect an author's stance towards a certain topic or claim.
We introduce a StD benchmark that learns from ten StD datasets of various domains in a multi-dataset learning setting.
Within this benchmark setup, we are able to present new state-of-the-art results on five of the datasets.
arXiv Detail & Related papers (2020-01-06T13:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.