DF40: Toward Next-Generation Deepfake Detection
- URL: http://arxiv.org/abs/2406.13495v2
- Date: Thu, 31 Oct 2024 09:11:37 GMT
- Title: DF40: Toward Next-Generation Deepfake Detection
- Authors: Zhiyuan Yan, Taiping Yao, Shen Chen, Yandan Zhao, Xinghe Fu, Junwei Zhu, Donghao Luo, Chengjie Wang, Shouhong Ding, Yunsheng Wu, Li Yuan,
- Abstract summary: existing works identify top-notch detection algorithms and models by adhering to the common practice: training detectors on one specific dataset and testing them on other prevalent deepfake datasets.
But can these stand-out "winners" be truly applied to tackle the myriad of realistic and diverse deepfakes lurking in the real world?
We construct a highly diverse deepfake detection dataset called DF40, which comprises 40 distinct deepfake techniques.
- Score: 62.073997142001424
- License:
- Abstract: We propose a new comprehensive benchmark to revolutionize the current deepfake detection field to the next generation. Predominantly, existing works identify top-notch detection algorithms and models by adhering to the common practice: training detectors on one specific dataset (e.g., FF++) and testing them on other prevalent deepfake datasets. This protocol is often regarded as a "golden compass" for navigating SoTA detectors. But can these stand-out "winners" be truly applied to tackle the myriad of realistic and diverse deepfakes lurking in the real world? If not, what underlying factors contribute to this gap? In this work, we found the dataset (both train and test) can be the "primary culprit" due to: (1) forgery diversity: Deepfake techniques are commonly referred to as both face forgery and entire image synthesis. Most existing datasets only contain partial types of them, with limited forgery methods implemented; (2) forgery realism: The dominated training dataset, FF++, contains out-of-date forgery techniques from the past four years. "Honing skills" on these forgeries makes it difficult to guarantee effective detection generalization toward nowadays' SoTA deepfakes; (3) evaluation protocol: Most detection works perform evaluations on one type, which hinders the development of universal deepfake detectors. To address this dilemma, we construct a highly diverse deepfake detection dataset called DF40, which comprises 40 distinct deepfake techniques. We then conduct comprehensive evaluations using 4 standard evaluation protocols and 8 representative detection methods, resulting in over 2,000 evaluations. Through these evaluations, we provide an extensive analysis from various perspectives, leading to 7 new insightful findings. We also open up 4 valuable yet previously underexplored research questions to inspire future works. Our project page is https://github.com/YZY-stack/DF40.
Related papers
- How Generalizable are Deepfake Image Detectors? An Empirical Study [4.42204674141385]
We present the first empirical study on the generalizability of deepfake detectors.
Our study utilizes six deepfake datasets, five deepfake image detection methods, and two model augmentation approaches.
We find that detectors are learning unwanted properties specific to synthesis methods and struggling to extract discriminative features.
arXiv Detail & Related papers (2023-08-08T10:30:34Z) - DeepfakeBench: A Comprehensive Benchmark of Deepfake Detection [55.70982767084996]
A critical yet frequently overlooked challenge in the field of deepfake detection is the lack of a standardized, unified, comprehensive benchmark.
We present the first comprehensive benchmark for deepfake detection, called DeepfakeBench, which offers three key contributions.
DeepfakeBench contains 15 state-of-the-art detection methods, 9CL datasets, a series of deepfake detection evaluation protocols and analysis tools, as well as comprehensive evaluations.
arXiv Detail & Related papers (2023-07-04T01:34:41Z) - Improving Fairness in Deepfake Detection [38.999205139257164]
biases in the data used to train deepfake detectors can lead to disparities in detection accuracy across different races and genders.
We propose novel loss functions that handle both the setting where demographic information is available as well as the case where this information is absent.
arXiv Detail & Related papers (2023-06-29T02:19:49Z) - Learning Pairwise Interaction for Generalizable DeepFake Detection [20.723277551489186]
A fast-paced development of DeepFake generation techniques challenge the detection schemes designed for known type DeepFakes.
We propose a new approach, Multi-Channel Xception Attention Pairwise Interaction (MCX-API), that exploits the power of pairwise learning and complementary information from different color space representations.
Our experiments indicate that our proposed method can generalize better than the state-of-the-art Deepfakes detectors.
arXiv Detail & Related papers (2023-02-26T10:39:08Z) - A Continual Deepfake Detection Benchmark: Dataset, Methods, and
Essentials [97.69553832500547]
This paper suggests a continual deepfake detection benchmark (CDDB) over a new collection of deepfakes from both known and unknown generative models.
We exploit multiple approaches to adapt multiclass incremental learning methods, commonly used in the continual visual recognition, to the continual deepfake detection problem.
arXiv Detail & Related papers (2022-05-11T13:07:19Z) - Voice-Face Homogeneity Tells Deepfake [56.334968246631725]
Existing detection approaches contribute to exploring the specific artifacts in deepfake videos.
We propose to perform the deepfake detection from an unexplored voice-face matching view.
Our model obtains significantly improved performance as compared to other state-of-the-art competitors.
arXiv Detail & Related papers (2022-03-04T09:08:50Z) - TAR: Generalized Forensic Framework to Detect Deepfakes using Weakly
Supervised Learning [17.40885531847159]
Deepfakes have become a critical social problem, and detecting them is of utmost importance.
In this work, we introduce a practical digital forensic tool to detect different types of deepfakes simultaneously.
We develop an autoencoder-based detection model with Residual blocks and sequentially perform transfer learning to detect different types of deepfakes simultaneously.
arXiv Detail & Related papers (2021-05-13T07:31:08Z) - Multi-attentional Deepfake Detection [79.80308897734491]
Face forgery by deepfake is widely spread over the internet and has raised severe societal concerns.
We propose a new multi-attentional deepfake detection network. Specifically, it consists of three key components: 1) multiple spatial attention heads to make the network attend to different local parts; 2) textural feature enhancement block to zoom in the subtle artifacts in shallow features; 3) aggregate the low-level textural feature and high-level semantic features guided by the attention maps.
arXiv Detail & Related papers (2021-03-03T13:56:14Z) - WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection [82.42495493102805]
We introduce a new dataset WildDeepfake which consists of 7,314 face sequences extracted from 707 deepfake videos collected completely from the internet.
We conduct a systematic evaluation of a set of baseline detection networks on both existing and our WildDeepfake datasets, and show that WildDeepfake is indeed a more challenging dataset, where the detection performance can decrease drastically.
arXiv Detail & Related papers (2021-01-05T11:10:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.