論文の概要: READ: Large-Scale Neural Scene Rendering for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2205.05509v1
- Date: Wed, 11 May 2022 14:02:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-12 17:15:29.735602
- Title: READ: Large-Scale Neural Scene Rendering for Autonomous Driving
- Title(参考訳): READ: 自動運転のための大規模ニューラルシーンレンダリング
- Authors: Zhuopeng Li, Lu Li, Zeyu Ma, Ping Zhang, Junbo Chen, Jianke Zhu
- Abstract要約: 自律走行シーンを合成するために,大規模ニューラルレンダリング手法を提案する。
我々のモデルは現実的な運転シーンを合成できるだけでなく、運転シーンの縫い付けや編集もできる。
- 参考スコア(独自算出の注目度): 21.144110676687667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthesizing free-view photo-realistic images is an important task in
multimedia. With the development of advanced driver assistance systems~(ADAS)
and their applications in autonomous vehicles, experimenting with different
scenarios becomes a challenge. Although the photo-realistic street scenes can
be synthesized by image-to-image translation methods, which cannot produce
coherent scenes due to the lack of 3D information. In this paper, a large-scale
neural rendering method is proposed to synthesize the autonomous driving
scene~(READ), which makes it possible to synthesize large-scale driving
scenarios on a PC through a variety of sampling schemes. In order to represent
driving scenarios, we propose an {\omega} rendering network to learn neural
descriptors from sparse point clouds. Our model can not only synthesize
realistic driving scenes but also stitch and edit driving scenes. Experiments
show that our model performs well in large-scale driving scenarios.
- Abstract(参考訳): フリービューフォトリアリスティック画像の合成はマルチメディアにおける重要な課題である。
高度運転支援システム(ADAS)の開発と、その自動運転車への応用により、様々なシナリオの実験が課題となる。
写実的なストリートシーンは画像から画像への変換によって合成できるが、3d情報がないためコヒーレントなシーンは生成できない。
本稿では,多種多様なサンプリング手法を用いて,pc上での大規模運転シナリオを合成可能な自律運転シーン~(read)を合成する,大規模ニューラルネットワークレンダリング手法を提案する。
運転シナリオを表現するために,スパースポイントクラウドからニューラルネットワーク記述子を学習するための「オメガ」レンダリングネットワークを提案する。
我々のモデルは現実的な運転シーンを合成できるだけでなく、運転シーンの縫い付けや編集もできる。
実験により,我々のモデルは大規模運転シナリオにおいて良好に動作することが示された。
関連論文リスト
- Real-Time Neural Character Rendering with Pose-Guided Multiplane Images [75.62730144924566]
リアルなシーンでアニマタブルなキャラクタをフォトリアリスティックな画質でレンダリングできるポーズ誘導多面体画像(MPI)合成を提案する。
我々は、移動物体の駆動信号とともに多視点画像をキャプチャするために、ポータブルカメラリグを使用します。
論文 参考訳(メタデータ) (2022-04-25T17:51:38Z) - Control-NeRF: Editable Feature Volumes for Scene Rendering and
Manipulation [58.16911861917018]
高品質な新規ビュー合成を実現しつつ,フレキシブルな3次元画像コンテンツ操作を実現するための新しい手法を提案する。
モデルペアはシーンに依存しないニューラルネットワークを用いてシーン固有の特徴ボリュームを学習する。
我々は、シーンの混合、オブジェクトの変形、シーンへのオブジェクト挿入など、さまざまなシーン操作を実証すると同時に、写真リアリスティックな結果も生成する。
論文 参考訳(メタデータ) (2022-04-22T17:57:00Z) - DriveGAN: Towards a Controllable High-Quality Neural Simulation [147.6822288981004]
DriveGANと呼ばれる新しい高品質のニューラルシミュレータを紹介します。
DriveGANは、異なるコンポーネントを監督なしで切り離すことによって制御性を達成する。
実世界の運転データ160時間を含む複数のデータセットでdriveganをトレーニングします。
論文 参考訳(メタデータ) (2021-04-30T15:30:05Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z) - End-to-end Interpretable Neural Motion Planner [78.69295676456085]
複雑な都市環境での自律走行学習のためのニューラルモーションプランナー(NMP)を提案する。
我々は,生lidarデータとhdマップを入力とし,解釈可能な中間表現を生成する全体モデルを設計した。
北米のいくつかの都市で収集された実世界の運転データにおける我々のアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2021-01-17T14:16:12Z) - SceneGen: Learning to Generate Realistic Traffic Scenes [92.98412203941912]
私たちは、ルールと分布の必要性を緩和するトラフィックシーンのニューラルオートレグレッシブモデルであるSceneGenを紹介します。
実トラフィックシーンの分布を忠実にモデル化するSceneGenの能力を実証する。
論文 参考訳(メタデータ) (2021-01-16T22:51:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。