Clinical Prompt Learning with Frozen Language Models
- URL: http://arxiv.org/abs/2205.05535v1
- Date: Wed, 11 May 2022 14:25:13 GMT
- Title: Clinical Prompt Learning with Frozen Language Models
- Authors: Niall Taylor, Yi Zhang, Dan Joyce, Alejo Nevado-Holgado, Andrey
Kormilitzin
- Abstract summary: Large but frozen pre-trained language models (PLMs) with prompt learning outperform smaller but fine-tuned models.
We investigated the viability of prompt learning on clinically meaningful decision tasks.
Results are partially in line with the prompt learning literature, with prompt learning able to match or improve on traditional fine-tuning.
- Score: 4.077071350659386
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prompt learning is a new paradigm in the Natural Language Processing (NLP)
field which has shown impressive performance on a number of natural language
tasks with common benchmarking text datasets in full, few-shot, and zero-shot
train-evaluation setups. Recently, it has even been observed that large but
frozen pre-trained language models (PLMs) with prompt learning outperform
smaller but fine-tuned models. However, as with many recent NLP trends, the
performance of even the largest PLMs such as GPT-3 do not perform well on
specialized domains (e.g. medical text), and the common practice to achieve
State of the Art (SoTA) results still consists of pre-training and fine-tuning
the PLMs on downstream tasks. The reliance on fine-tuning large PLMs is
problematic in clinical settings where data is often held in non-GPU
environments, and more resource efficient methods of training specialized
domain models is crucial. We investigated the viability of prompt learning on
clinically meaningful decision tasks and directly compared with more
traditional fine-tuning methods. Results are partially in line with the prompt
learning literature, with prompt learning able to match or improve on
traditional fine-tuning with substantially fewer trainable parameters and
requiring less training data. We argue that prompt learning therefore provides
lower computational resource costs applicable to clinical settings, that can
serve as an alternative to fine-tuning ever increasing in size PLMs.
Complementary code to reproduce experiments presented in this work can be found
at: https://github.com/NtaylorOX/Public_Clinical_Prompt.
Related papers
- Using Large Language Models for Expert Prior Elicitation in Predictive Modelling [53.54623137152208]
This study proposes using large language models (LLMs) to elicit expert prior distributions for predictive models.
We compare LLM-elicited and uninformative priors, evaluate whether LLMs truthfully generate parameter distributions, and propose a model selection strategy for in-context learning and prior elicitation.
Our findings show that LLM-elicited prior parameter distributions significantly reduce predictive error compared to uninformative priors in low-data settings.
arXiv Detail & Related papers (2024-11-26T10:13:39Z) - Context-aware Prompt Tuning: Advancing In-Context Learning with Adversarial Methods [69.36397993451742]
This work introduces Context-aware Prompt Tuning (CPT), a method inspired by ICL, PT, and adversarial attacks.
We modify specific context tokens, considering the unique structure of input and output formats.
Inspired by adversarial attacks, we adjust the input based on the labels present in the context, focusing on minimizing, rather than maximizing, the loss.
arXiv Detail & Related papers (2024-10-22T17:45:47Z) - Uncertainty-aware Parameter-Efficient Self-training for Semi-supervised
Language Understanding [38.11411155621616]
We study self-training as one of the predominant semi-supervised learning approaches.
We present UPET, a novel Uncertainty-aware self-Training framework.
We show that UPET achieves a substantial improvement in terms of performance and efficiency.
arXiv Detail & Related papers (2023-10-19T02:18:29Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - Instance-wise Prompt Tuning for Pretrained Language Models [72.74916121511662]
Instance-wise Prompt Tuning (IPT) is the first prompt learning paradigm that injects knowledge from the input data instances to the prompts.
IPT significantly outperforms task-based prompt learning methods, and achieves comparable performance to conventional finetuning with only 0.5% - 1.5% of tuned parameters.
arXiv Detail & Related papers (2022-06-04T10:08:50Z) - Prompt Tuning for Discriminative Pre-trained Language Models [96.04765512463415]
Recent works have shown promising results of prompt tuning in stimulating pre-trained language models (PLMs) for natural language processing (NLP) tasks.
It is still unknown whether and how discriminative PLMs, e.g., ELECTRA, can be effectively prompt-tuned.
We present DPT, the first prompt tuning framework for discriminative PLMs, which reformulates NLP tasks into a discriminative language modeling problem.
arXiv Detail & Related papers (2022-05-23T10:11:50Z) - HealthPrompt: A Zero-shot Learning Paradigm for Clinical Natural
Language Processing [3.762895631262445]
We developed a novel prompt-based clinical NLP framework called HealthPrompt.
We performed an in-depth analysis of HealthPrompt on six different PLMs in a no-data setting.
Our experiments prove that prompts effectively capture the context of clinical texts and perform remarkably well without any training data.
arXiv Detail & Related papers (2022-03-09T21:44:28Z) - AdaPrompt: Adaptive Model Training for Prompt-based NLP [77.12071707955889]
We propose AdaPrompt, adaptively retrieving external data for continual pretraining of PLMs.
Experimental results on five NLP benchmarks show that AdaPrompt can improve over standard PLMs in few-shot settings.
In zero-shot settings, our method outperforms standard prompt-based methods by up to 26.35% relative error reduction.
arXiv Detail & Related papers (2022-02-10T04:04:57Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore.
We show how to achieve up to a 6x speed-up in inference speed while retaining comparable performance.
arXiv Detail & Related papers (2021-09-09T12:32:28Z) - Fine-tuning BERT for Low-Resource Natural Language Understanding via
Active Learning [30.5853328612593]
In this work, we explore fine-tuning methods of BERT -- a pre-trained Transformer based language model.
Our experimental results show an advantage in model performance by maximizing the approximate knowledge gain of the model.
We analyze the benefits of freezing layers of the language model during fine-tuning to reduce the number of trainable parameters.
arXiv Detail & Related papers (2020-12-04T08:34:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.