Using Large Language Models for Expert Prior Elicitation in Predictive Modelling
- URL: http://arxiv.org/abs/2411.17284v1
- Date: Tue, 26 Nov 2024 10:13:39 GMT
- Title: Using Large Language Models for Expert Prior Elicitation in Predictive Modelling
- Authors: Alexander Capstick, Rahul G. Krishnan, Payam Barnaghi,
- Abstract summary: This study proposes using large language models (LLMs) to elicit expert prior distributions for predictive models.
We compare LLM-elicited and uninformative priors, evaluate whether LLMs truthfully generate parameter distributions, and propose a model selection strategy for in-context learning and prior elicitation.
Our findings show that LLM-elicited prior parameter distributions significantly reduce predictive error compared to uninformative priors in low-data settings.
- Score: 53.54623137152208
- License:
- Abstract: Large language models (LLMs), trained on diverse data effectively acquire a breadth of information across various domains. However, their computational complexity, cost, and lack of transparency hinder their direct application for specialised tasks. In fields such as clinical research, acquiring expert annotations or prior knowledge about predictive models is often costly and time-consuming. This study proposes using LLMs to elicit expert prior distributions for predictive models. This approach also provides an alternative to in-context learning, where language models are tasked with making predictions directly. We compare LLM-elicited and uninformative priors, evaluate whether LLMs truthfully generate parameter distributions, and propose a model selection strategy for in-context learning and prior elicitation. Our findings show that LLM-elicited prior parameter distributions significantly reduce predictive error compared to uninformative priors in low-data settings. Applied to clinical problems, this translates to fewer required biological samples, lowering cost and resources. Prior elicitation also consistently outperforms and proves more reliable than in-context learning at a lower cost, making it a preferred alternative in our setting. We demonstrate the utility of this method across various use cases, including clinical applications. For infection prediction, using LLM-elicited priors reduced the number of required labels to achieve the same accuracy as an uninformative prior by 55%, at 200 days earlier in the study.
Related papers
- A Practical Guide to Fine-tuning Language Models with Limited Data [9.413178499853156]
Employing pre-trained Large Language Models (LLMs) has become the de facto standard in Natural Language Processing (NLP) despite their extensive data requirements.
Motivated by the recent surge in research focused on training LLMs with limited data, this paper surveys recent transfer learning approaches to optimize model performance in downstream tasks where data is scarce.
arXiv Detail & Related papers (2024-11-14T15:55:37Z) - Dynamic Uncertainty Ranking: Enhancing In-Context Learning for Long-Tail Knowledge in LLMs [50.29035873837]
Large language models (LLMs) can learn vast amounts of knowledge from diverse domains during pre-training.
Long-tail knowledge from specialized domains is often scarce and underrepresented, rarely appearing in the models' memorization.
We propose a reinforcement learning-based dynamic uncertainty ranking method for ICL that accounts for the varying impact of each retrieved sample on LLM predictions.
arXiv Detail & Related papers (2024-10-31T03:42:17Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Causal-Guided Active Learning for Debiasing Large Language Models [40.853803921563596]
Current generative large language models (LLMs) may still capture dataset biases and utilize them for generation.
Previous prior-knowledge-based debiasing methods and fine-tuning-based debiasing methods may not be suitable for current LLMs.
We propose a casual-guided active learning framework, which utilizes LLMs itself to automatically and autonomously identify informative biased samples and induce the bias patterns.
arXiv Detail & Related papers (2024-08-23T09:46:15Z) - Deep Bayesian Active Learning for Preference Modeling in Large Language Models [84.817400962262]
We propose the Bayesian Active Learner for Preference Modeling (BAL-PM) for Preference Modeling.
BAL-PM requires 33% to 68% fewer preference labels in two popular human preference datasets and exceeds previous Bayesian acquisition policies.
Our experiments demonstrate that BAL-PM requires 33% to 68% fewer preference labels in two popular human preference datasets and exceeds previous Bayesian acquisition policies.
arXiv Detail & Related papers (2024-06-14T13:32:43Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - LLM Processes: Numerical Predictive Distributions Conditioned on Natural Language [35.84181171987974]
Our goal is to build a regression model that can process numerical data and make probabilistic predictions at arbitrary locations.
We start by exploring strategies for eliciting explicit, coherent numerical predictive distributions from Large Language Models.
We demonstrate the ability to usefully incorporate text into numerical predictions, improving predictive performance and giving quantitative structure that reflects qualitative descriptions.
arXiv Detail & Related papers (2024-05-21T15:13:12Z) - Prompting Large Language Models for Zero-Shot Clinical Prediction with
Structured Longitudinal Electronic Health Record Data [7.815738943706123]
Large Language Models (LLMs) are traditionally tailored for natural language processing.
This research investigates the adaptability of LLMs, like GPT-4, to EHR data.
In response to the longitudinal, sparse, and knowledge-infused nature of EHR data, our prompting approach involves taking into account specific characteristics.
arXiv Detail & Related papers (2024-01-25T20:14:50Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - Clinical Prompt Learning with Frozen Language Models [4.077071350659386]
Large but frozen pre-trained language models (PLMs) with prompt learning outperform smaller but fine-tuned models.
We investigated the viability of prompt learning on clinically meaningful decision tasks.
Results are partially in line with the prompt learning literature, with prompt learning able to match or improve on traditional fine-tuning.
arXiv Detail & Related papers (2022-05-11T14:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.