An Empirical Study Of Self-supervised Learning Approaches For Object
Detection With Transformers
- URL: http://arxiv.org/abs/2205.05543v1
- Date: Wed, 11 May 2022 14:39:27 GMT
- Title: An Empirical Study Of Self-supervised Learning Approaches For Object
Detection With Transformers
- Authors: Gokul Karthik Kumar, Sahal Shaji Mullappilly, Abhishek Singh Gehlot
- Abstract summary: We explore self-supervised methods based on image reconstruction, masked image modeling and jigsaw.
Preliminary experiments in the iSAID dataset demonstrate faster convergence of DETR in the initial epochs in both pretraining and multi-task learning settings.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised learning (SSL) methods such as masked language modeling have
shown massive performance gains by pretraining transformer models for a variety
of natural language processing tasks. The follow-up research adapted similar
methods like masked image modeling in vision transformer and demonstrated
improvements in the image classification task. Such simple self-supervised
methods are not exhaustively studied for object detection transformers (DETR,
Deformable DETR) as their transformer encoder modules take input in the
convolutional neural network (CNN) extracted feature space rather than the
image space as in general vision transformers. However, the CNN feature maps
still maintain the spatial relationship and we utilize this property to design
self-supervised learning approaches to train the encoder of object detection
transformers in pretraining and multi-task learning settings. We explore common
self-supervised methods based on image reconstruction, masked image modeling
and jigsaw. Preliminary experiments in the iSAID dataset demonstrate faster
convergence of DETR in the initial epochs in both pretraining and multi-task
learning settings; nonetheless, similar improvement is not observed in the case
of multi-task learning with Deformable DETR. The code for our experiments with
DETR and Deformable DETR are available at https://github.com/gokulkarthik/detr
and https://github.com/gokulkarthik/Deformable-DETR respectively.
Related papers
- MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining [73.81862342673894]
Foundation models have reshaped the landscape of Remote Sensing (RS) by enhancing various image interpretation tasks.
transferring the pretrained models to downstream tasks may encounter task discrepancy due to their formulation of pretraining as image classification or object discrimination tasks.
We conduct multi-task supervised pretraining on the SAMRS dataset, encompassing semantic segmentation, instance segmentation, and rotated object detection.
Our models are finetuned on various RS downstream tasks, such as scene classification, horizontal and rotated object detection, semantic segmentation, and change detection.
arXiv Detail & Related papers (2024-03-20T09:17:22Z) - Contrastive Learning for Multi-Object Tracking with Transformers [79.61791059432558]
We show how DETR can be turned into a MOT model by employing an instance-level contrastive loss.
Our training scheme learns object appearances while preserving detection capabilities and with little overhead.
Its performance surpasses the previous state-of-the-art by +2.6 mMOTA on the challenging BDD100K dataset.
arXiv Detail & Related papers (2023-11-14T10:07:52Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Learning Explicit Object-Centric Representations with Vision
Transformers [81.38804205212425]
We build on the self-supervision task of masked autoencoding and explore its effectiveness for learning object-centric representations with transformers.
We show that the model efficiently learns to decompose simple scenes as measured by segmentation metrics on several multi-object benchmarks.
arXiv Detail & Related papers (2022-10-25T16:39:49Z) - Shifted Chunk Transformer for Spatio-Temporal Representational Learning [24.361059477031162]
We construct a shifted chunk Transformer with pure self-attention blocks.
This Transformer can learn hierarchical-temporal features from a tiny patch to a global video clip.
It outperforms state-of-the-art approaches on Kinetics, Kinetics-600, UCF101, and HMDB51.
arXiv Detail & Related papers (2021-08-26T04:34:33Z) - ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias [76.16156833138038]
We propose a novel Vision Transformer Advanced by Exploring intrinsic IB from convolutions, ie, ViTAE.
ViTAE has several spatial pyramid reduction modules to downsample and embed the input image into tokens with rich multi-scale context.
In each transformer layer, ViTAE has a convolution block in parallel to the multi-head self-attention module, whose features are fused and fed into the feed-forward network.
arXiv Detail & Related papers (2021-06-07T05:31:06Z) - Visual Saliency Transformer [127.33678448761599]
We develop a novel unified model based on a pure transformer, Visual Saliency Transformer (VST), for both RGB and RGB-D salient object detection (SOD)
It takes image patches as inputs and leverages the transformer to propagate global contexts among image patches.
Experimental results show that our model outperforms existing state-of-the-art results on both RGB and RGB-D SOD benchmark datasets.
arXiv Detail & Related papers (2021-04-25T08:24:06Z) - Self-Supervised Learning via multi-Transformation Classification for
Action Recognition [10.676377556393527]
We introduce a self-supervised video representation learning method based on the multi-transformation classification to efficiently classify human actions.
The representation of the video is learned in a self-supervised manner by classifying seven different transformations.
We have conducted the experiments on UCF101 and HMDB51 datasets together with C3D and 3D Resnet-18 as backbone networks.
arXiv Detail & Related papers (2021-02-20T16:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.