ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias
- URL: http://arxiv.org/abs/2106.03348v1
- Date: Mon, 7 Jun 2021 05:31:06 GMT
- Title: ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias
- Authors: Yufei Xu, Qiming Zhang, Jing Zhang, Dacheng Tao
- Abstract summary: We propose a novel Vision Transformer Advanced by Exploring intrinsic IB from convolutions, ie, ViTAE.
ViTAE has several spatial pyramid reduction modules to downsample and embed the input image into tokens with rich multi-scale context.
In each transformer layer, ViTAE has a convolution block in parallel to the multi-head self-attention module, whose features are fused and fed into the feed-forward network.
- Score: 76.16156833138038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformers have shown great potential in various computer vision tasks
owing to their strong capability in modeling long-range dependency using the
self-attention mechanism. Nevertheless, vision transformers treat an image as
1D sequence of visual tokens, lacking an intrinsic inductive bias (IB) in
modeling local visual structures and dealing with scale variance.
Alternatively, they require large-scale training data and longer training
schedules to learn the IB implicitly. In this paper, we propose a novel Vision
Transformer Advanced by Exploring intrinsic IB from convolutions, \ie, ViTAE.
Technically, ViTAE has several spatial pyramid reduction modules to downsample
and embed the input image into tokens with rich multi-scale context by using
multiple convolutions with different dilation rates. In this way, it acquires
an intrinsic scale invariance IB and is able to learn robust feature
representation for objects at various scales. Moreover, in each transformer
layer, ViTAE has a convolution block in parallel to the multi-head
self-attention module, whose features are fused and fed into the feed-forward
network. Consequently, it has the intrinsic locality IB and is able to learn
local features and global dependencies collaboratively. Experiments on ImageNet
as well as downstream tasks prove the superiority of ViTAE over the baseline
transformer and concurrent works. Source code and pretrained models will be
available at GitHub.
Related papers
- DuoFormer: Leveraging Hierarchical Visual Representations by Local and Global Attention [1.5624421399300303]
We propose a novel hierarchical transformer model that adeptly integrates the feature extraction capabilities of Convolutional Neural Networks (CNNs) with the advanced representational potential of Vision Transformers (ViTs)
Addressing the lack of inductive biases and dependence on extensive training datasets in ViTs, our model employs a CNN backbone to generate hierarchical visual representations.
These representations are then adapted for transformer input through an innovative patch tokenization.
arXiv Detail & Related papers (2024-07-18T22:15:35Z) - Holistically Explainable Vision Transformers [136.27303006772294]
We propose B-cos transformers, which inherently provide holistic explanations for their decisions.
Specifically, we formulate each model component - such as the multi-layer perceptrons, attention layers, and the tokenisation module - to be dynamic linear.
We apply our proposed design to Vision Transformers (ViTs) and show that the resulting models, dubbed Bcos-ViTs, are highly interpretable and perform competitively to baseline ViTs.
arXiv Detail & Related papers (2023-01-20T16:45:34Z) - Multimodal Fusion Transformer for Remote Sensing Image Classification [35.57881383390397]
Vision transformers (ViTs) have been trending in image classification tasks due to their promising performance when compared to convolutional neural networks (CNNs)
To achieve satisfactory performance, close to that of CNNs, transformers need fewer parameters.
We introduce a new multimodal fusion transformer (MFT) network which comprises a multihead cross patch attention (mCrossPA) for HSI land-cover classification.
arXiv Detail & Related papers (2022-03-31T11:18:41Z) - ViTAEv2: Vision Transformer Advanced by Exploring Inductive Bias for
Image Recognition and Beyond [76.35955924137986]
We propose a Vision Transformer Advanced by Exploring intrinsic IB from convolutions, i.e., ViTAE.
ViTAE has several spatial pyramid reduction modules to downsample and embed the input image into tokens with rich multi-scale context.
We obtain the state-of-the-art classification performance, i.e., 88.5% Top-1 classification accuracy on ImageNet validation set and the best 91.2% Top-1 accuracy on ImageNet real validation set.
arXiv Detail & Related papers (2022-02-21T10:40:05Z) - MPViT: Multi-Path Vision Transformer for Dense Prediction [43.89623453679854]
Vision Transformers (ViTs) build a simple multi-stage structure for multi-scale representation with single-scale patches.
OuriTs scaling from tiny(5M) to base(73M) consistently achieve superior performance over state-of-the-art Vision Transformers.
arXiv Detail & Related papers (2021-12-21T06:34:50Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
Less attention vIsion Transformer builds upon the fact that convolutions, fully-connected layers, and self-attentions have almost equivalent mathematical expressions for processing image patch sequences.
The proposed LIT achieves promising performance on image recognition tasks, including image classification, object detection and instance segmentation.
arXiv Detail & Related papers (2021-05-29T05:26:07Z) - Vision Transformers are Robust Learners [65.91359312429147]
We study the robustness of the Vision Transformer (ViT) against common corruptions and perturbations, distribution shifts, and natural adversarial examples.
We present analyses that provide both quantitative and qualitative indications to explain why ViTs are indeed more robust learners.
arXiv Detail & Related papers (2021-05-17T02:39:22Z) - Visformer: The Vision-friendly Transformer [105.52122194322592]
We propose a new architecture named Visformer, which is abbreviated from the Vision-friendly Transformer'
With the same computational complexity, Visformer outperforms both the Transformer-based and convolution-based models in terms of ImageNet classification accuracy.
arXiv Detail & Related papers (2021-04-26T13:13:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.