論文の概要: AFFIRM: Affinity Fusion-based Framework for Iteratively Random Motion
correction of multi-slice fetal brain MRI
- arxiv url: http://arxiv.org/abs/2205.05851v1
- Date: Thu, 12 May 2022 02:54:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-13 14:24:17.510779
- Title: AFFIRM: Affinity Fusion-based Framework for Iteratively Random Motion
correction of multi-slice fetal brain MRI
- Title(参考訳): アサーブ:アフィニティ融合を用いたマルチスライス胎児脳mriの反復的無作為運動補正フレームワーク
- Authors: Wen Shi, Haoan Xu, Cong Sun, Jiwei Sun, Yamin Li, Xinyi Xu, Tianshu
Zheng, Yi Zhang, Guangbin Wang and Dan Wu
- Abstract要約: Affinity Fusion-based Framework for Iteratively Random Motion correct of the multi-slice fetal brain MRI。
複数のスライスからシーケンシャルな動きを学習し、親和性融合を用いて2次元スライスと再構成された3次元ボリュームの特徴を統合する。
この方法は、脳の向きに関係なく正確に動きを推定し、シミュレートされた動き破壊データに対して、他の最先端の学習法より優れる。
- 参考スコア(独自算出の注目度): 8.087220876070477
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-slice magnetic resonance images of the fetal brain are usually
contaminated by severe and arbitrary fetal and maternal motion. Hence, stable
and robust motion correction is necessary to reconstruct high-resolution 3D
fetal brain volume for clinical diagnosis and quantitative analysis. However,
the conventional registration-based correction has a limited capture range and
is insufficient for detecting relatively large motions. Here, we present a
novel Affinity Fusion-based Framework for Iteratively Random Motion (AFFIRM)
correction of the multi-slice fetal brain MRI. It learns the sequential motion
from multiple stacks of slices and integrates the features between 2D slices
and reconstructed 3D volume using affinity fusion, which resembles the
iterations between slice-to-volume registration and volumetric reconstruction
in the regular pipeline. The method accurately estimates the motion regardless
of brain orientations and outperforms other state-of-the-art learning-based
methods on the simulated motion-corrupted data, with a 48.4% reduction of mean
absolute error for rotation and 61.3% for displacement. We then incorporated
AFFIRM into the multi-resolution slice-to-volume registration and tested it on
the real-world fetal MRI scans at different gestation stages. The results
indicated that adding AFFIRM to the conventional pipeline improved the success
rate of fetal brain super-resolution reconstruction from 77.2% to 91.9%.
- Abstract(参考訳): 胎児脳のマルチスライス磁気共鳴画像は通常、重篤で任意の胎児と母体の動きによって汚染される。
したがって, 安定かつロバストな動作補正は, 臨床診断および定量的解析のために, 高分解能3次元胎児脳体積を再構成するために必要である。
しかし、従来の登録ベース補正は捕捉範囲が限られており、比較的大きな動きを検出するには不十分である。
そこで本研究では,マルチスライス胎児脳MRIの反復ランダム運動(AFFIRM)補正のためのAffinity Fusionベースのフレームワークを提案する。
複数のスライスのスタックからシーケンシャルな動きを学び、2dスライスと再構築された3dボリュームの間の特徴をアフィニティ融合を用いて統合する。
この方法は、脳の向きに関係なく正確な動きを推定し、シミュレーションされた動き分解データによる他の最先端学習法よりも優れており、回転の平均絶対誤差が48.4%減少し、変位が61.3%減少している。
次に,AFFIRMをマルチレゾリューションスライス・ツー・ボリューム登録に組み込み,異なる妊娠段階の胎児MRIで検査した。
その結果、AFFIRMを従来のパイプラインに加えることで、胎児脳の超解像再構成の成功率が77.2%から91.9%に向上した。
関連論文リスト
- HAITCH: A Framework for Distortion and Motion Correction in Fetal Multi-Shell Diffusion-Weighted MRI [5.393543723150301]
この研究は、マルチシェル高角解像度胎児dMRIデータの修正と再構成を行う最初の、かつ唯一公開されたツールであるHAITCHを提示する。
HaITCHは、動的歪み補正のためのblip-reversed dual-echo取得を含む、いくつかの技術的進歩を提供している。
HaITCHはアーティファクトの除去に成功し、高度な拡散モデリングに適した高忠実度胎児dMRIデータを再構成する。
論文 参考訳(メタデータ) (2024-06-28T16:40:57Z) - A self-attention model for robust rigid slice-to-volume registration of functional MRI [4.615338063719135]
fMRIスキャン中の頭部の動きは、歪み、偏りの分析、コストの増加をもたらす。
本稿では,2次元fMRIスライスを3次元参照ボリュームに整列するエンド・ツー・エンドSVRモデルを提案する。
本モデルは,最先端のディープラーニング手法と比較して,アライメント精度の面での競合性能を実現する。
論文 参考訳(メタデータ) (2024-04-06T08:02:18Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - View-Disentangled Transformer for Brain Lesion Detection [50.4918615815066]
より正確な腫瘍検出のためのMRI特徴抽出のための新しいビューディペンタングル変換器を提案する。
まず, 3次元脳スキャンにおいて, 異なる位置の長距離相関を求める。
第二に、トランスフォーマーはスライス機能のスタックを複数の2Dビューとしてモデル化し、これらの機能をビュー・バイ・ビューとして拡張する。
第三に、提案したトランスモジュールをトランスのバックボーンに展開し、脳病変を取り巻く2D領域を効果的に検出する。
論文 参考訳(メタデータ) (2022-09-20T11:58:23Z) - Motion Correction and Volumetric Reconstruction for Fetal Functional
Magnetic Resonance Imaging Data [3.690756997172894]
運動補正は胎児脳の機能的磁気共鳴イメージング(fMRI)において重要な前処理ステップである。
胎児のfMRIに対する現在の動作補正手法は、特定の取得時点から1つの3Dボリュームを選択する。
本稿では,外乱運動補正を用いて高解像度の基準体積を推定する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-11T19:11:16Z) - 4D iterative reconstruction of brain fMRI in the moving fetus [1.8492120771993543]
本手法の精度を実地臨床用fMRI胎児群で定量的に評価した。
その結果,従来の3D手法と比較して再現性の向上が見られた。
論文 参考訳(メタデータ) (2021-11-22T18:12:21Z) - Rapid head-pose detection for automated slice prescription of
fetal-brain MRI [2.0526610003396657]
胎児脳MRIでは, 処方と接収の主目的の変化は, 標準的な矢状, 冠状, 軸方向の視線を得る上での課題である。
そこで本研究では,EPI(Full-uterus Scout scan)を用いた頭部位置検出アルゴリズムを提案する。
この方法の成功率は3学期で94%を超え、訓練された技術者を最大20%上回った。
論文 参考訳(メタデータ) (2021-10-08T13:59:05Z) - 3-Dimensional Deep Learning with Spatial Erasing for Unsupervised
Anomaly Segmentation in Brain MRI [55.97060983868787]
我々は,MRIボリュームと空間消去を組み合わせた空間文脈の増大が,教師なしの異常セグメンテーション性能の向上に繋がるかどうかを検討する。
本稿では,2次元変分オートエンコーダ(VAE)と3次元の相違点を比較し,3次元入力消去を提案し,データセットサイズが性能に与える影響を体系的に検討する。
入力消去による最高の3D VAEは、平均DICEスコアが31.40%となり、2D VAEは25.76%となった。
論文 参考訳(メタデータ) (2021-09-14T09:17:27Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z) - 4D Deep Learning for Multiple Sclerosis Lesion Activity Segmentation [49.32653090178743]
我々は,MRIボリュームの履歴を用いて,この問題をフル4次元ディープラーニングに拡張することで,性能が向上するかどうか検討する。
提案手法は, 病変側真陽性率0.84, 病変側偽陽性率0.19で従来手法より優れていた。
論文 参考訳(メタデータ) (2020-04-20T11:41:01Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。