Over-the-Air Federated Learning with Joint Adaptive Computation and
Power Control
- URL: http://arxiv.org/abs/2205.05867v1
- Date: Thu, 12 May 2022 03:28:03 GMT
- Title: Over-the-Air Federated Learning with Joint Adaptive Computation and
Power Control
- Authors: Haibo Yang, Peiwen Qiu, Jia Liu and Aylin Yener
- Abstract summary: Over-the-air computation learning (OTA-FL) is considered in this paper.
OTA-FL exploits the superposition property of the wireless medium and performs aggregation over the air for free.
- Score: 30.7130850260223
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper considers over-the-air federated learning (OTA-FL). OTA-FL
exploits the superposition property of the wireless medium, and performs model
aggregation over the air for free. Thus, it can greatly reduce the
communication cost incurred in communicating model updates from the edge
devices. In order to fully utilize this advantage while providing comparable
learning performance to conventional federated learning that presumes model
aggregation via noiseless channels, we consider the joint design of
transmission scaling and the number of local iterations at each round, given
the power constraint at each edge device. We first characterize the training
error due to such channel noise in OTA-FL by establishing a fundamental lower
bound for general functions with Lipschitz-continuous gradients. Then, by
introducing an adaptive transceiver power scaling scheme, we propose an
over-the-air federated learning algorithm with joint adaptive computation and
power control (ACPC-OTA-FL). We provide the convergence analysis for
ACPC-OTA-FL in training with non-convex objective functions and heterogeneous
data. We show that the convergence rate of ACPC-OTA-FL matches that of FL with
noise-free communications.
Related papers
- UAV-assisted Unbiased Hierarchical Federated Learning: Performance and Convergence Analysis [16.963596661873954]
Hierarchical federated learning (HFL) is a key paradigm to distribute learning across edge devices to reach global intelligence.
In HFL, each edge device trains a local model using its respective data and transmits the updated model parameters to an edge server for local aggregation.
This paper proposes an unbiased HFL algorithm for unmanned aerial vehicle (UAV)-assisted wireless networks.
arXiv Detail & Related papers (2024-07-05T06:23:01Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Channel and Gradient-Importance Aware Device Scheduling for Over-the-Air
Federated Learning [31.966999085992505]
Federated learning (FL) is a privacy-preserving distributed training scheme.
We propose a device scheduling framework for over-the-air FL, named PO-FL, to mitigate the negative impact of channel noise distortion.
arXiv Detail & Related papers (2023-05-26T12:04:59Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - Hierarchical Over-the-Air Federated Edge Learning [26.553214197361626]
We propose hierarchical over-the-air federated learning (HOTAFL) to form clusters near mobile users (MUs)
We demonstrate through theoretical and experimental results that local aggregation in each cluster before global aggregation leads to a better performance and faster convergence than OTA FL.
arXiv Detail & Related papers (2021-12-21T13:02:10Z) - Over-the-Air Federated Learning with Retransmissions (Extended Version) [21.37147806100865]
We study the impact of estimation errors on the convergence of Federated Learning (FL) over resource-constrained wireless networks.
We propose retransmissions as a method to improve FL convergence over resource-constrained wireless networks.
arXiv Detail & Related papers (2021-11-19T15:17:15Z) - Over-the-Air Federated Learning from Heterogeneous Data [107.05618009955094]
Federated learning (FL) is a framework for distributed learning of centralized models.
We develop a Convergent OTA FL (COTAF) algorithm which enhances the common local gradient descent (SGD) FL algorithm.
We numerically show that the precoding induced by COTAF notably improves the convergence rate and the accuracy of models trained via OTA FL.
arXiv Detail & Related papers (2020-09-27T08:28:25Z) - Gradient Statistics Aware Power Control for Over-the-Air Federated
Learning [59.40860710441232]
Federated learning (FL) is a promising technique that enables many edge devices to train a machine learning model collaboratively in wireless networks.
This paper studies the power control problem for over-the-air FL by taking gradient statistics into account.
arXiv Detail & Related papers (2020-03-04T14:06:51Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
Unmanned aerial vehicle (UAV) swarms must exploit machine learning (ML) in order to execute various tasks.
In this paper, a novel framework is proposed to implement distributed learning (FL) algorithms within a UAV swarm.
arXiv Detail & Related papers (2020-02-19T14:04:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.