論文の概要: FPSRS: A Fusion Approach for Paper Submission Recommendation System
- arxiv url: http://arxiv.org/abs/2205.05965v1
- Date: Thu, 12 May 2022 09:06:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-13 14:22:23.263941
- Title: FPSRS: A Fusion Approach for Paper Submission Recommendation System
- Title(参考訳): fpsrs:論文提出推薦システムのための融合アプローチ
- Authors: Son T. Huynh, Nhi Dang, Dac H. Nguyen, Phong T. Huynh, and Binh T.
Nguyen
- Abstract要約: 本稿では,科学論文を推薦する2つの新しいアプローチを提案する。
最初のアプローチでは、Conv1D以外にもRNN構造を採用している。
また,DistilBertAimsという新しい手法を導入し,大文字小文字と小文字小文字の2例にDistillBertを用いて, Title, Abstract, Keywordsなどの特徴をベクトル化する。
実験の結果、第2のアプローチはパフォーマンスが向上し、62.46%、12.44%が従来の研究よりも高いことがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recommender systems have been increasingly popular in entertainment and
consumption and are evident in academics, especially for applications that
suggest submitting scientific articles to scientists. However, because of the
various acceptance rates, impact factors, and rankings in different publishers,
searching for a proper venue or journal to submit a scientific work usually
takes a lot of time and effort. In this paper, we aim to present two newer
approaches extended from our paper [13] presented at the conference IAE/AIE
2021 by employing RNN structures besides using Conv1D. In addition, we also
introduce a new method, namely DistilBertAims, using DistillBert for two cases
of uppercase and lower-case words to vectorize features such as Title,
Abstract, and Keywords, and then use Conv1d to perform feature extraction.
Furthermore, we propose a new calculation method for similarity score for Aim &
Scope with other features; this helps keep the weights of similarity score
calculation continuously updated and then continue to fit more data. The
experimental results show that the second approach could obtain a better
performance, which is 62.46% and 12.44% higher than the best of the previous
study [13] in terms of the Top 1 accuracy.
- Abstract(参考訳): レコメンダーシステムはエンターテイメントや消費で人気が高まり、特に科学者に科学論文を提出することを推奨するアプリケーションで学術的に顕著である。
しかし、様々な受理率、影響要因、異なる出版社のランキングのため、科学論文を提出する適切な場所や雑誌を探すのには通常多くの時間と労力がかかる。
本稿では,Conv1D以外のRNN構造を用いてIAE/AIE 2021で発表した論文[13]から,新たな2つのアプローチを提案する。
さらに,DistilBertAimsという新しい手法を導入し,2つの大文字小文字に対してDistillBertを用いて, Title, Abstract, Keywords などの特徴をベクトル化し,Conv1d を用いて特徴抽出を行う。
さらに,aimとスコープの類似度スコアを他の特徴とともに計算する方法を提案し,類似度スコアの重み付けを連続的に更新し,さらにより多くのデータに適合させる。
実験結果から,第2のアプローチでは,前回の[13]よりも62.46%,12.44%高い性能が得られた。
関連論文リスト
- PoseRAC: Pose Saliency Transformer for Repetitive Action Counting [56.34379680390869]
冗長なフレームではなく,2つのサレントポーズのみを用いて,各アクションを効率よく表現するPose Saliency Representationを導入する。
また,この表現に基づいて,最先端のパフォーマンスを実現するPoseRACについても紹介する。
当社の軽量モデルは非常に効率的で、GPUでのトレーニングに20分しか必要とせず、従来の方法に比べて10倍近い速さで推論します。
論文 参考訳(メタデータ) (2023-03-15T08:51:17Z) - Deep Active Ensemble Sampling For Image Classification [8.31483061185317]
アクティブラーニングフレームワークは、最も有益なデータポイントのラベル付けを積極的に要求することで、データアノテーションのコストを削減することを目的としている。
提案手法には、不確実性に基づく手法、幾何学的手法、不確実性に基づく手法と幾何学的手法の暗黙の組み合わせなどがある。
本稿では, サンプル選択戦略における効率的な探索・探索トレードオフを実現するために, 不確実性に基づくフレームワークと幾何学的フレームワークの両方の最近の進歩を革新的に統合する。
本フレームワークは,(1)正確な後続推定,(2)計算オーバーヘッドと高い精度のトレードオフの2つの利点を提供する。
論文 参考訳(メタデータ) (2022-10-11T20:20:20Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
クリックスルー率(CTR)予測は、ユーザーが商品をクリックする確率を予測することを目的としており、リコメンデーションシステムにおいてますます重要になっている。
近年,ユーザの行動からユーザの興味を自動的に抽出する深層学習モデルが大きな成功を収めている。
そこで我々は,メタラッパー(Meta-Wrapper)と呼ばれるラッパー手法の枠組みに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-06-28T03:28:15Z) - SimCPSR: Simple Contrastive Learning for Paper Submission Recommendation
System [0.0]
本研究では,論文提出推薦システムの効率的な手法としてトランスファーラーニングを用いたトランスフォーマーモデルを提案する。
本質的な情報(タイトル、要約、キーワードのリストなど)をジャーナルの目的とスコープと組み合わせることで、このモデルは論文の受容を最大化するトップK誌を推薦することができる。
論文 参考訳(メタデータ) (2022-05-12T08:08:22Z) - Integrating Rankings into Quantized Scores in Peer Review [61.27794774537103]
ピアレビューでは、レビュアーは通常、論文のスコアを提供するように求められます。
この問題を軽減するため、カンファレンスはレビュアーにレビューした論文のランキングを付加するように求め始めている。
このランキング情報を使用するための標準的な手順はなく、エリアチェアは異なる方法でそれを使用することができる。
我々は、ランキング情報をスコアに組み込むために、原則化されたアプローチを取る。
論文 参考訳(メタデータ) (2022-04-05T19:39:13Z) - LaPraDoR: Unsupervised Pretrained Dense Retriever for Zero-Shot Text
Retrieval [55.097573036580066]
実験結果から,LaPraDoRは教師付き高密度検索モデルと比較して最先端の性能が得られることがわかった。
再ランクと比較すると,1ミリ秒 (22.5倍高速) でレキシコン強化手法を動作させることができるが,性能は良好である。
論文 参考訳(メタデータ) (2022-03-11T18:53:12Z) - SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval [11.38022203865326]
SPLADEモデルは、最先端の高密度かつスパースなアプローチに関して、高度にスパースな表現と競争結果を提供する。
我々は、プール機構を変更し、文書拡張のみに基づいてモデルをベンチマークし、蒸留で訓練されたモデルを導入する。
全体として、SPLADEはTREC DL 2019のNDCG@10で9ドル以上のゲインで大幅に改善され、BEIRベンチマークで最先端の結果が得られた。
論文 参考訳(メタデータ) (2021-09-21T10:43:42Z) - Reenvisioning Collaborative Filtering vs Matrix Factorization [65.74881520196762]
近年,行列因数分解に基づく協調フィルタリングモデルや,ニューラルネットワーク(ANN)を用いた類似性の学習が注目されている。
推薦エコシステム内でのANNの発表が最近疑問視され、効率性と有効性に関していくつかの比較がなされている。
本研究では,これらの手法が相補的評価次元に与える影響を解析しながら,超精度評価にもたらす可能性を示す。
論文 参考訳(メタデータ) (2021-07-28T16:29:38Z) - Linking Health News to Research Literature [12.80865601729801]
ニュース記事と科学研究を正確に関連付けることは、多くの応用において重要な要素である。
ニュースと文学の結びつきの欠如はこれらの応用において課題となっているが、これは比較的未解明の研究問題である。
論文 参考訳(メタデータ) (2021-07-14T03:50:51Z) - Instance-Level Relative Saliency Ranking with Graph Reasoning [126.09138829920627]
そこで本研究では,有意な事例を分割し,相対的有意な有意なランク順序を推定するための統一モデルを提案する。
また、サラレンシーランキングブランチを効果的にトレーニングするために、新しい損失関数も提案されている。
実験の結果,提案手法は従来の手法よりも有効であることがわかった。
論文 参考訳(メタデータ) (2021-07-08T13:10:42Z) - Learning Neural Textual Representations for Citation Recommendation [7.227232362460348]
サブモジュラースコアリング機能において,シームズとトリプルトネットワークを併用した文書(センテンス-BERT)の深部表現を用いた引用推薦手法を提案する。
我々の知る限りでは、これは引用推薦のタスクに対して、ディープ表現とサブモジュラー選択を組み合わせるための最初のアプローチである。
論文 参考訳(メタデータ) (2020-07-08T12:38:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。