論文の概要: Simple Open-Vocabulary Object Detection with Vision Transformers
- arxiv url: http://arxiv.org/abs/2205.06230v1
- Date: Thu, 12 May 2022 17:20:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-13 13:40:11.407223
- Title: Simple Open-Vocabulary Object Detection with Vision Transformers
- Title(参考訳): 視覚トランスフォーマーを用いた簡易オープンボキャブラリー物体検出
- Authors: Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk
Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa
Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, Neil Houlsby
- Abstract要約: 本稿では,画像テキストモデルをオープン語彙オブジェクト検出に転送するための強力なレシピを提案する。
我々は、最小限の修正、コントラスト的な画像テキスト事前学習、エンドツーエンド検出細調整を備えた標準のVision Transformerアーキテクチャを使用する。
我々は、ゼロショットテキスト条件とワンショット画像条件オブジェクト検出において、非常に強力な性能を達成するために必要な適応戦略と正規化を提供する。
- 参考スコア(独自算出の注目度): 51.57562920090721
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Combining simple architectures with large-scale pre-training has led to
massive improvements in image classification. For object detection,
pre-training and scaling approaches are less well established, especially in
the long-tailed and open-vocabulary setting, where training data is relatively
scarce. In this paper, we propose a strong recipe for transferring image-text
models to open-vocabulary object detection. We use a standard Vision
Transformer architecture with minimal modifications, contrastive image-text
pre-training, and end-to-end detection fine-tuning. Our analysis of the scaling
properties of this setup shows that increasing image-level pre-training and
model size yield consistent improvements on the downstream detection task. We
provide the adaptation strategies and regularizations needed to attain very
strong performance on zero-shot text-conditioned and one-shot image-conditioned
object detection. Code and models are available on GitHub.
- Abstract(参考訳): 単純なアーキテクチャと大規模な事前学習を組み合わせることで、画像分類が大幅に改善された。
オブジェクト検出では、事前トレーニングとスケーリングのアプローチは、特にトレーニングデータが比較的少ない長い尾とオープンな語彙設定では、あまり確立されていない。
本稿では,画像テキストモデルをオープン語彙オブジェクト検出に転送するための強力なレシピを提案する。
我々は、最小限の修正、コントラスト的な画像テキスト事前学習、エンドツーエンド検出細調整を備えた標準のVision Transformerアーキテクチャを使用する。
その結果,画像レベルの事前学習とモデルサイズの増加により,下流検出タスクにおいて一貫した改善が得られた。
我々は,ゼロショットテキストコンディショニングおよびワンショット画像コンディショニングオブジェクト検出において,非常に強力な性能を達成するために必要な適応戦略と規則化を提供する。
コードとモデルはgithubで入手できる。
関連論文リスト
- Vision Transformer with Convolutions Architecture Search [72.70461709267497]
本稿では,畳み込み型アーキテクチャサーチ(VTCAS)を用いたアーキテクチャ探索手法を提案する。
VTCASによって探索された高性能バックボーンネットワークは、畳み込みニューラルネットワークの望ましい特徴をトランスフォーマーアーキテクチャに導入する。
これは、特に低照度屋内シーンにおいて、物体認識のためのニューラルネットワークの堅牢性を高める。
論文 参考訳(メタデータ) (2022-03-20T02:59:51Z) - ProFormer: Learning Data-efficient Representations of Body Movement with
Prototype-based Feature Augmentation and Visual Transformers [31.908276711898548]
身体からのデータ効率の高い認識法は、画像のような配列として構造化された骨格配列をますます活用している。
我々は、このパラダイムをトランスフォーマーネットワークの観点から見て、初めて、骨格運動のデータ効率の高いエンコーダとして視覚トランスフォーマーを探索する。
私たちのパイプラインでは、画像のような表現としてキャストされたボディポーズシーケンスをパッチ埋め込みに変換し、深いメトリック学習に最適化されたビジュアルトランスフォーマーバックボーンに渡します。
論文 参考訳(メタデータ) (2022-02-23T11:11:54Z) - Real-Time Scene Text Detection with Differentiable Binarization and
Adaptive Scale Fusion [62.269219152425556]
セグメンテーションに基づくシーンテキスト検出手法はシーンテキスト検出分野において大きな注目を集めている。
本稿では,二項化処理をセグメンテーションネットワークに統合する分散二項化(DB)モジュールを提案する。
アダプティブ・スケール・フュージョン (ASF) モジュールは, 異なるスケールの特徴を適応的に融合させることにより, スケールのロバスト性を向上させる。
論文 参考訳(メタデータ) (2022-02-21T15:30:14Z) - Prompting Visual-Language Models for Efficient Video Understanding [28.754997650215486]
本稿では,事前学習した1つの視覚言語モデルを,最小限のトレーニングで新しいタスクに効果的に適応させる方法を提案する。
静的画像とビデオのギャップを埋めるために、フレームワイドの視覚的特徴の上に軽量なトランスフォーマーを積み重ねたテンポラリな情報をエンコードする。
論文 参考訳(メタデータ) (2021-12-08T18:58:16Z) - Contrastive Document Representation Learning with Graph Attention
Networks [18.22722084624321]
本稿では,既訓練トランスフォーマーモデル上にグラフアテンションネットワークを用いて文書の埋め込みを学習することを提案する。
さらに、グラフ文書モデルに基づいて、大量のラベルなしコーパスでモデルを事前学習するための単純なコントラスト学習戦略を設計する。
論文 参考訳(メタデータ) (2021-10-20T21:05:02Z) - Visformer: The Vision-friendly Transformer [105.52122194322592]
我々は視覚に優しいトランスフォーマーから短縮したvisformerという新しいアーキテクチャを提案する。
同じ計算の複雑さにより、VisformerはTransformerベースのモデルとConvolutionベースのモデルの両方をImageNet分類精度で上回る。
論文 参考訳(メタデータ) (2021-04-26T13:13:03Z) - Thinking Fast and Slow: Efficient Text-to-Visual Retrieval with
Transformers [115.90778814368703]
目的は,大規模画像とビデオデータセットの言語検索である。
このタスクでは、独立してテキストとビジョンを共同埋め込み空間 a.k.a にマッピングする。
デュアルエンコーダは 検索スケールとして魅力的です
視覚テキスト変換器をクロスアテンションで使用する別のアプローチは、関節埋め込みよりも精度が大幅に向上する。
論文 参考訳(メタデータ) (2021-03-30T17:57:08Z) - Instance Localization for Self-supervised Detection Pretraining [68.24102560821623]
インスタンスローカリゼーションと呼ばれる,新たな自己監視型プリテキストタスクを提案する。
境界ボックスを事前学習に組み込むことで、より優れたタスクアライメントとアーキテクチャアライメントが促進されることを示す。
実験結果から, オブジェクト検出のための最先端の転送学習結果が得られた。
論文 参考訳(メタデータ) (2021-02-16T17:58:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。