Deep Reinforcement Learning for Computational Fluid Dynamics on HPC
Systems
- URL: http://arxiv.org/abs/2205.06502v1
- Date: Fri, 13 May 2022 08:21:18 GMT
- Title: Deep Reinforcement Learning for Computational Fluid Dynamics on HPC
Systems
- Authors: Marius Kurz, Philipp Offenh\"auser, Dominic Viola, Oleksandr
Shcherbakov, Michael Resch, Andrea Beck
- Abstract summary: Reinforcement learning (RL) is highly suitable for devising control strategies in the context of dynamical systems.
Recent research results indicate that RL-augmented computational fluid dynamics (CFD) solvers can exceed the current state of the art.
We present Relexi as a scalable RL framework that bridges the gap between machine learning and modern CFD solvers on HPC systems.
- Score: 17.10464381844892
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Reinforcement learning (RL) is highly suitable for devising control
strategies in the context of dynamical systems. A prominent instance of such a
dynamical system is the system of equations governing fluid dynamics. Recent
research results indicate that RL-augmented computational fluid dynamics (CFD)
solvers can exceed the current state of the art, for example in the field of
turbulence modeling. However, while in supervised learning, the training data
can be generated a priori in an offline manner, RL requires constant run-time
interaction and data exchange with the CFD solver during training. In order to
leverage the potential of RL-enhanced CFD, the interaction between the CFD
solver and the RL algorithm thus have to be implemented efficiently on
high-performance computing (HPC) hardware. To this end, we present Relexi as a
scalable RL framework that bridges the gap between machine learning workflows
and modern CFD solvers on HPC systems providing both components with its
specialized hardware. Relexi is built with modularity in mind and allows easy
integration of various HPC solvers by means of the in-memory data transfer
provided by the SmartSim library. Here, we demonstrate that the Relexi
framework can scale up to hundreds of parallel environment on thousands of
cores. This allows to leverage modern HPC resources to either enable larger
problems or faster turnaround times. Finally, we demonstrate the potential of
an RL-augmented CFD solver by finding a control strategy for optimal eddy
viscosity selection in large eddy simulations.
Related papers
- SINDy-RL: Interpretable and Efficient Model-Based Reinforcement Learning [5.59265003686955]
We introduce SINDy-RL, a framework for combining SINDy and deep reinforcement learning.
SINDy-RL achieves comparable performance to state-of-the-art DRL algorithms.
We demonstrate the effectiveness of our approaches on benchmark control environments and challenging fluids problems.
arXiv Detail & Related papers (2024-03-14T05:17:39Z) - Real-World Fluid Directed Rigid Body Control via Deep Reinforcement
Learning [7.714620721734689]
"Box o Flows" is an experimental control system for systematically evaluating RL algorithms in dynamic real-world scenarios.
We show how state-of-the-art model-free RL algorithms can synthesize a variety of complex behaviors via simple reward specifications.
We believe that the insights gained from this preliminary study and the availability of systems like the Box o Flows support the way forward for developing systematic RL algorithms.
arXiv Detail & Related papers (2024-02-08T23:35:03Z) - Transfer of Reinforcement Learning-Based Controllers from Model- to
Hardware-in-the-Loop [1.8218298349840023]
Reinforcement Learning has great potential for autonomously training agents to perform complex control tasks.
To use RL effectively in embedded system function development, the generated agents must be able to handle real-world applications.
This work focuses on accelerating the training process of RL agents by combining Transfer Learning (TL) and X-in-the-Loop (XiL) simulation.
arXiv Detail & Related papers (2023-10-25T09:13:12Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
offline reinforcement learning (RL) paradigm provides recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data.
In this paper, we propose an adaptive scheme for action quantization.
We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme.
arXiv Detail & Related papers (2023-10-18T06:07:10Z) - Controlling dynamical systems to complex target states using machine
learning: next-generation vs. classical reservoir computing [68.8204255655161]
Controlling nonlinear dynamical systems using machine learning allows to drive systems into simple behavior like periodicity but also to more complex arbitrary dynamics.
We show first that classical reservoir computing excels at this task.
In a next step, we compare those results based on different amounts of training data to an alternative setup, where next-generation reservoir computing is used instead.
It turns out that while delivering comparable performance for usual amounts of training data, next-generation RC significantly outperforms in situations where only very limited data is available.
arXiv Detail & Related papers (2023-07-14T07:05:17Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
Recent years have seen many successful applications of machine learning (ML) to facilitate fluid dynamic computations.
As simulations grow, generating new training datasets for traditional offline learning creates I/O and storage bottlenecks.
This work offers a solution by simplifying this coupling and enabling in situ training and inference on heterogeneous clusters.
arXiv Detail & Related papers (2023-06-22T14:07:54Z) - Learning a model is paramount for sample efficiency in reinforcement
learning control of PDEs [5.488334211013093]
We show that learning an actuated model in parallel to training the RL agent significantly reduces the total amount of required data sampled from the real system.
We also show that iteratively updating the model is of major importance to avoid biases in the RL training.
arXiv Detail & Related papers (2023-02-14T16:14:39Z) - Data-driven control of spatiotemporal chaos with reduced-order neural
ODE-based models and reinforcement learning [0.0]
Deep learning is capable of discovering complex control strategies for high-dimensional systems, making it promising for flow control applications.
A major challenge associated with RL is that substantial training data must be generated by repeatedly interacting with the target system.
We use a data-driven reduced-order model (ROM) in place the true system during RL training to efficiently estimate the optimal policy.
We show that the ROM-based control strategy translates well to the true KSE and highlight that the RL agent discovers and stabilizes an underlying forced equilibrium solution of the KSE system.
arXiv Detail & Related papers (2022-05-01T23:25:44Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
We present a differentiable simulator and a new policy learning algorithm (SHAC)
Our algorithm alleviates problems with local minima through a smooth critic function.
We show substantial improvements in sample efficiency and wall-clock time over state-of-the-art RL and differentiable simulation-based algorithms.
arXiv Detail & Related papers (2022-04-14T17:46:26Z) - Reinforcement Learning-Empowered Mobile Edge Computing for 6G Edge
Intelligence [76.96698721128406]
Mobile edge computing (MEC) considered a novel paradigm for computation and delay-sensitive tasks in fifth generation (5G) networks and beyond.
This paper provides a comprehensive research review on free-enabled RL and offers insight for development.
arXiv Detail & Related papers (2022-01-27T10:02:54Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.