Transfer of Reinforcement Learning-Based Controllers from Model- to
Hardware-in-the-Loop
- URL: http://arxiv.org/abs/2310.17671v1
- Date: Wed, 25 Oct 2023 09:13:12 GMT
- Title: Transfer of Reinforcement Learning-Based Controllers from Model- to
Hardware-in-the-Loop
- Authors: Mario Picerno, Lucas Koch, Kevin Badalian, Marius Wegener, Joschka
Schaub, Charles Robert Koch, and Jakob Andert
- Abstract summary: Reinforcement Learning has great potential for autonomously training agents to perform complex control tasks.
To use RL effectively in embedded system function development, the generated agents must be able to handle real-world applications.
This work focuses on accelerating the training process of RL agents by combining Transfer Learning (TL) and X-in-the-Loop (XiL) simulation.
- Score: 1.8218298349840023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The process of developing control functions for embedded systems is
resource-, time-, and data-intensive, often resulting in sub-optimal cost and
solutions approaches. Reinforcement Learning (RL) has great potential for
autonomously training agents to perform complex control tasks with minimal
human intervention. Due to costly data generation and safety constraints,
however, its application is mostly limited to purely simulated domains. To use
RL effectively in embedded system function development, the generated agents
must be able to handle real-world applications. In this context, this work
focuses on accelerating the training process of RL agents by combining Transfer
Learning (TL) and X-in-the-Loop (XiL) simulation. For the use case of transient
exhaust gas re-circulation control for an internal combustion engine, use of a
computationally cheap Model-in-the-Loop (MiL) simulation is made to select a
suitable algorithm, fine-tune hyperparameters, and finally train candidate
agents for the transfer. These pre-trained RL agents are then fine-tuned in a
Hardware-in-the-Loop (HiL) system via TL. The transfer revealed the need for
adjusting the reward parameters when advancing to real hardware. Further, the
comparison between a purely HiL-trained and a transferred agent showed a
reduction of training time by a factor of 5.9. The results emphasize the
necessity to train RL agents with real hardware, and demonstrate that the
maturity of the transferred policies affects both training time and
performance, highlighting the strong synergies between TL and XiL simulation.
Related papers
- DistRL: An Asynchronous Distributed Reinforcement Learning Framework for On-Device Control Agents [38.0441002097771]
DistRL is a novel framework designed to enhance the efficiency of online RL fine-tuning for mobile device control agents.
On average, DistRL delivers a 3X improvement in training efficiency and enables training data collection 2.4X faster than the leading synchronous multi-machine methods.
arXiv Detail & Related papers (2024-10-18T18:19:56Z) - Learning to Fly in Seconds [7.259696592534715]
We show how curriculum learning and a highly optimized simulator enhance sample complexity and lead to fast training times.
Our framework enables Simulation-to-Reality (Sim2Real) transfer for direct control after only 18 seconds of training on a consumer-grade laptop.
arXiv Detail & Related papers (2023-11-22T01:06:45Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
Recent years have seen many successful applications of machine learning (ML) to facilitate fluid dynamic computations.
As simulations grow, generating new training datasets for traditional offline learning creates I/O and storage bottlenecks.
This work offers a solution by simplifying this coupling and enabling in situ training and inference on heterogeneous clusters.
arXiv Detail & Related papers (2023-06-22T14:07:54Z) - RL + Model-based Control: Using On-demand Optimal Control to Learn Versatile Legged Locomotion [16.800984476447624]
This paper presents a control framework that combines model-based optimal control and reinforcement learning.
We validate the robustness and controllability of the framework through a series of experiments.
Our framework effortlessly supports the training of control policies for robots with diverse dimensions.
arXiv Detail & Related papers (2023-05-29T01:33:55Z) - Train a Real-world Local Path Planner in One Hour via Partially
Decoupled Reinforcement Learning and Vectorized Diversity [8.068886870457561]
Deep Reinforcement Learning (DRL) has exhibited efficacy in resolving the Local Path Planning (LPP) problem.
Such application in the real world is immensely limited due to the deficient training efficiency and generalization capability of DRL.
A solution named Color is proposed, which consists of an Actor-Sharer-Learner (ASL) training framework and a mobile robot-oriented simulator Sparrow.
arXiv Detail & Related papers (2023-05-07T03:39:31Z) - Actively Learning Costly Reward Functions for Reinforcement Learning [56.34005280792013]
We show that it is possible to train agents in complex real-world environments orders of magnitudes faster.
By enabling the application of reinforcement learning methods to new domains, we show that we can find interesting and non-trivial solutions.
arXiv Detail & Related papers (2022-11-23T19:17:20Z) - Deep Reinforcement Learning for Computational Fluid Dynamics on HPC
Systems [17.10464381844892]
Reinforcement learning (RL) is highly suitable for devising control strategies in the context of dynamical systems.
Recent research results indicate that RL-augmented computational fluid dynamics (CFD) solvers can exceed the current state of the art.
We present Relexi as a scalable RL framework that bridges the gap between machine learning and modern CFD solvers on HPC systems.
arXiv Detail & Related papers (2022-05-13T08:21:18Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
We present a differentiable simulator and a new policy learning algorithm (SHAC)
Our algorithm alleviates problems with local minima through a smooth critic function.
We show substantial improvements in sample efficiency and wall-clock time over state-of-the-art RL and differentiable simulation-based algorithms.
arXiv Detail & Related papers (2022-04-14T17:46:26Z) - Efficient Transformers in Reinforcement Learning using Actor-Learner
Distillation [91.05073136215886]
"Actor-Learner Distillation" transfers learning progress from a large capacity learner model to a small capacity actor model.
We demonstrate in several challenging memory environments that using Actor-Learner Distillation recovers the clear sample-efficiency gains of the transformer learner model.
arXiv Detail & Related papers (2021-04-04T17:56:34Z) - RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real [74.45688231140689]
We introduce the RL-scene consistency loss for image translation, which ensures that the translation operation is invariant with respect to the Q-values associated with the image.
We obtain RL-CycleGAN, a new approach for simulation-to-real-world transfer for reinforcement learning.
arXiv Detail & Related papers (2020-06-16T08:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.