論文の概要: Improving Contextual Representation with Gloss Regularized Pre-training
- arxiv url: http://arxiv.org/abs/2205.06603v1
- Date: Fri, 13 May 2022 12:50:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-16 12:19:50.203983
- Title: Improving Contextual Representation with Gloss Regularized Pre-training
- Title(参考訳): 正規化事前学習による文脈表現の改善
- Authors: Yu Lin, Zhecheng An, Peihao Wu, Zejun Ma
- Abstract要約: 本稿では,単語の意味的類似性を高めるため,BERT事前学習(GR-BERT)に補助的なグロース正規化モジュールを提案する。
マスクされた単語を予測し、コンテキスト埋め込みを対応するグルースに同時にアライメントすることにより、単語の類似性を明示的にモデル化することができる。
実験結果から,単語レベルおよび文レベルの意味表現において,Gloss regularizerはBERTの恩恵を受けることがわかった。
- 参考スコア(独自算出の注目度): 9.589252392388758
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Though achieving impressive results on many NLP tasks, the BERT-like masked
language models (MLM) encounter the discrepancy between pre-training and
inference. In light of this gap, we investigate the contextual representation
of pre-training and inference from the perspective of word probability
distribution. We discover that BERT risks neglecting the contextual word
similarity in pre-training. To tackle this issue, we propose an auxiliary gloss
regularizer module to BERT pre-training (GR-BERT), to enhance word semantic
similarity. By predicting masked words and aligning contextual embeddings to
corresponding glosses simultaneously, the word similarity can be explicitly
modeled. We design two architectures for GR-BERT and evaluate our model in
downstream tasks. Experimental results show that the gloss regularizer benefits
BERT in word-level and sentence-level semantic representation. The GR-BERT
achieves new state-of-the-art in lexical substitution task and greatly promotes
BERT sentence representation in both unsupervised and supervised STS tasks.
- Abstract(参考訳): 多くのNLPタスクにおいて印象的な結果が得られるが、BERTのようなマスク付き言語モデル(MLM)は事前学習と推論の相違に遭遇する。
このギャップを考慮して,単語確率分布の観点から,事前学習と推論の文脈的表現について検討する。
bertは,事前学習における文脈的単語類似性を無視するリスクがあることを見出した。
そこで本研究では,単語の意味的類似性を高めるため,BERT事前学習(GR-BERT)に補助的なグロース正規化モジュールを提案する。
マスクされた単語を予測し、対応する用語にコンテキスト埋め込みを同時に調整することで、単語の類似性を明示的にモデル化することができる。
GR-BERTのための2つのアーキテクチャを設計し、下流タスクでモデルを評価する。
実験の結果,単語レベルおよび文レベルの意味表現において,Gloss regularizerはBERTの恩恵を受けることがわかった。
GR-BERTは、語彙置換タスクにおける新しい最先端処理を実現し、教師なしタスクと教師なしSTSタスクの両方においてBERT文表現を大幅に促進する。
関連論文リスト
- Breaking Down Word Semantics from Pre-trained Language Models through
Layer-wise Dimension Selection [0.0]
本稿では,レイヤ間の中間出力にバイナリマスクを適用することにより,BERTから意味感覚を分離することを目的とする。
2つの異なる文の目的語が同じ意味を持つかどうかを判定するために、二分分類により、アンタングル埋め込みを評価する。
論文 参考訳(メタデータ) (2023-10-08T11:07:19Z) - Contextualized Semantic Distance between Highly Overlapped Texts [85.1541170468617]
テキスト編集や意味的類似性評価といった自然言語処理タスクにおいて、ペア化されたテキストに重複が頻繁に発生する。
本稿では,マスク・アンド・予測戦略を用いてこの問題に対処することを目的とする。
本稿では,最も長い単語列の単語を隣接する単語とみなし,その位置の分布を予測するためにマスク付き言語モデリング(MLM)を用いる。
セマンティックテキスト類似性の実験では、NDDは様々な意味的差異、特に高い重なり合うペアテキストに対してより敏感であることが示されている。
論文 参考訳(メタデータ) (2021-10-04T03:59:15Z) - On the Sentence Embeddings from Pre-trained Language Models [78.45172445684126]
本稿では,BERT埋め込みにおける意味情報が完全に活用されていないことを論じる。
BERTは常に文の非滑らかな異方性意味空間を誘導し,その意味的類似性を損なう。
本稿では,非教師対象で学習した正規化フローにより,異方性文の埋め込み分布を滑らかで等方性ガウス分布に変換することを提案する。
論文 参考訳(メタデータ) (2020-11-02T13:14:57Z) - GiBERT: Introducing Linguistic Knowledge into BERT through a Lightweight
Gated Injection Method [29.352569563032056]
本稿では,言語知識を単語埋め込みの形で,事前学習したBERTに明示的に注入する手法を提案する。
依存性ベースと逆適合の埋め込みを注入する場合、複数のセマンティックな類似性データセットのパフォーマンス改善は、そのような情報が有益であり、現在元のモデルから欠落していることを示している。
論文 参考訳(メタデータ) (2020-10-23T17:00:26Z) - Improving Text Generation with Student-Forcing Optimal Transport [122.11881937642401]
トレーニングモードとテストモードで生成されたシーケンスに最適なトランスポート(OT)を提案する。
テキストシーケンスの構造的および文脈的情報に基づいて、OT学習を改善するための拡張も提案されている。
提案手法の有効性は,機械翻訳,テキスト要約,テキスト生成タスクにおいて検証される。
論文 参考訳(メタデータ) (2020-10-12T19:42:25Z) - Exploring BERT's Sensitivity to Lexical Cues using Tests from Semantic
Priming [8.08493736237816]
本研究は, セマンティックプライミング(セマンティックプライミング)を用いて, 事前学習したBERTモデルを解析するケーススタディである。
BERTもまた「価格」を示し、文脈が関連語を含む場合と非関連語を含む場合の確率がより大きいことを予測している。
フォローアップ分析では、コンテキストがより情報的になるにつれて、BERTは関連した素語に気を散らす傾向にある。
論文 参考訳(メタデータ) (2020-10-06T20:30:59Z) - Syntactic Structure Distillation Pretraining For Bidirectional Encoders [49.483357228441434]
本稿では,BERTプレトレーニングに構文バイアスを注入するための知識蒸留手法を提案する。
我々は,構文的 LM から単語の周辺分布を抽出する。
本研究は,大量のデータを利用する表現学習者においても,構文バイアスの利点を示すものである。
論文 参考訳(メタデータ) (2020-05-27T16:44:01Z) - BURT: BERT-inspired Universal Representation from Twin Structure [89.82415322763475]
BURT (BERT inspired Universal Representation from Twin Structure) は任意の粒度の入力シーケンスに対して普遍的で固定サイズの表現を生成することができる。
提案するBURTは,Siameseネットワークを採用し,自然言語推論データセットから文レベル表現を学習し,パラフレーズ化データセットから単語/フレーズレベル表現を学習する。
我々は,STSタスク,SemEval2013 Task 5(a) など,テキスト類似性タスクの粒度によってBURTを評価する。
論文 参考訳(メタデータ) (2020-04-29T04:01:52Z) - Multilingual Alignment of Contextual Word Representations [49.42244463346612]
BERTはXNLIのゼロショット性能をベースモデルに比べて大幅に改善した。
単語検索の文脈バージョンを導入し、下流のゼロショット転送とよく相関していることを示す。
これらの結果は、大規模多言語事前学習モデルの理解に有用な概念としてコンテキストアライメントをサポートする。
論文 参考訳(メタデータ) (2020-02-10T03:27:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。