Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds
- URL: http://arxiv.org/abs/2205.06908v2
- Date: Thu, 11 Apr 2024 19:32:21 GMT
- Title: Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds
- Authors: Michael O'Connell, Guanya Shi, Xichen Shi, Kamyar Azizzadenesheli, Anima Anandkumar, Yisong Yue, Soon-Jo Chung,
- Abstract summary: We present a learning-based approach that allows rapid online adaptation by incorporating pretrained representations through deep learning.
Neural-Fly achieves precise flight control with substantially smaller tracking error than state-of-the-art nonlinear and adaptive controllers.
- Score: 96.74836678572582
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Executing safe and precise flight maneuvers in dynamic high-speed winds is important for the ongoing commoditization of uninhabited aerial vehicles (UAVs). However, because the relationship between various wind conditions and its effect on aircraft maneuverability is not well understood, it is challenging to design effective robot controllers using traditional control design methods. We present Neural-Fly, a learning-based approach that allows rapid online adaptation by incorporating pretrained representations through deep learning. Neural-Fly builds on two key observations that aerodynamics in different wind conditions share a common representation and that the wind-specific part lies in a low-dimensional space. To that end, Neural-Fly uses a proposed learning algorithm, domain adversarially invariant meta-learning (DAIML), to learn the shared representation, only using 12 minutes of flight data. With the learned representation as a basis, Neural-Fly then uses a composite adaptation law to update a set of linear coefficients for mixing the basis elements. When evaluated under challenging wind conditions generated with the Caltech Real Weather Wind Tunnel, with wind speeds up to 43.6 kilometers/hour (12.1 meters/second), Neural-Fly achieves precise flight control with substantially smaller tracking error than state-of-the-art nonlinear and adaptive controllers. In addition to strong empirical performance, the exponential stability of Neural-Fly results in robustness guarantees. Last, our control design extrapolates to unseen wind conditions, is shown to be effective for outdoor flights with only onboard sensors, and can transfer across drones with minimal performance degradation.
Related papers
- Inverted Landing in a Small Aerial Robot via Deep Reinforcement Learning
for Triggering and Control of Rotational Maneuvers [11.29285364660789]
Inverted landing in a rapid and robust manner is a challenging feat for aerial robots, especially while depending entirely on onboard sensing and computation.
Previous work has identified a direct causal connection between a series of onboard visual cues and kinematic actions that allow for reliable execution of this challenging aerobatic maneuver in small aerial robots.
In this work, we first utilized Deep Reinforcement Learning and a physics-based simulation to obtain a general, optimal control policy for robust inverted landing.
arXiv Detail & Related papers (2022-09-22T14:38:10Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
We introduce a deep learning approach for the retrieval of wind speed time series from underwater acoustics.
Our approach bridges data assimilation and learning-based frameworks to benefit both from prior physical knowledge and computational efficiency.
arXiv Detail & Related papers (2022-08-18T15:27:40Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Optimizing Airborne Wind Energy with Reinforcement Learning [0.0]
Reinforcement Learning is a technique that learns to associate observations with profitable actions without requiring prior knowledge of the system.
We show that in a simulated environment Reinforcement Learning finds an efficient way to control a kite so that it can tow a vehicle for long distances.
arXiv Detail & Related papers (2022-03-27T10:28:16Z) - Wireless-Enabled Asynchronous Federated Fourier Neural Network for
Turbulence Prediction in Urban Air Mobility (UAM) [101.80862265018033]
Urban air mobility (UAM) has been proposed in which vertical takeoff and landing (VTOL) aircraft are used to provide a ride-hailing service.
In UAM, aircraft can operate in designated air spaces known as corridors, that link the aerodromes.
A reliable communication network between GBSs and aircraft enables UAM to adequately utilize the airspace.
arXiv Detail & Related papers (2021-12-26T14:41:52Z) - Learning High-Speed Flight in the Wild [101.33104268902208]
We propose an end-to-end approach that can autonomously fly quadrotors through complex natural and man-made environments at high speeds.
The key principle is to directly map noisy sensory observations to collision-free trajectories in a receding-horizon fashion.
By simulating realistic sensor noise, our approach achieves zero-shot transfer from simulation to challenging real-world environments.
arXiv Detail & Related papers (2021-10-11T09:43:11Z) - Airfoil's Aerodynamic Coefficients Prediction using Artificial Neural
Network [0.0]
Figuring out the right airfoil is a crucial step in the preliminary stage of any aerial vehicle design.
This study compares different network architectures and training datasets in an attempt to gain insight as to how the network perceives the given airfoil geometries.
arXiv Detail & Related papers (2021-09-24T19:07:19Z) - Meta-Learning-Based Robust Adaptive Flight Control Under Uncertain Wind
Conditions [13.00214468719929]
Realtime model learning is challenging for complex dynamical systems, such as drones flying in variable wind conditions.
We propose an online composite adaptation method that treats outputs from a deep neural network as a set of basis functions.
We validate our approach by flying a drone in an open air wind tunnel under varying wind conditions and along challenging trajectories.
arXiv Detail & Related papers (2021-03-02T18:43:59Z) - Transition control of a tail-sitter UAV using recurrent neural networks [80.91076033926224]
The control strategy is based on attitude and velocity stabilization.
The RNN is used for the estimation of high nonlinear aerodynamic terms.
Results show convergence of linear velocities and the pitch angle during the transition maneuver.
arXiv Detail & Related papers (2020-06-29T21:33:30Z) - Wind Speed Prediction using Deep Ensemble Learning with a Jet-like
Architecture [0.28675177318965034]
The design of wings, tail, and nose of a jet improves aerodynamics resulting in a smooth and controlled flight of the jet.
The diverse feature spaces of the base-regressors are exploited using the jet-like ensemble architecture.
The proposed DEL-Jet technique is evaluated for ten independent runs and shows that the deep and jet-like architecture helps in improving the robustness and generalization of the learning system.
arXiv Detail & Related papers (2020-02-28T08:33:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.