Optimizing Airborne Wind Energy with Reinforcement Learning
- URL: http://arxiv.org/abs/2203.14271v1
- Date: Sun, 27 Mar 2022 10:28:16 GMT
- Title: Optimizing Airborne Wind Energy with Reinforcement Learning
- Authors: N. Orzan, C. Leone, A. Mazzolini, J. Oyero, A. Celani
- Abstract summary: Reinforcement Learning is a technique that learns to associate observations with profitable actions without requiring prior knowledge of the system.
We show that in a simulated environment Reinforcement Learning finds an efficient way to control a kite so that it can tow a vehicle for long distances.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Airborne Wind Energy is a lightweight technology that allows power extraction
from the wind using airborne devices such as kites and gliders, where the
airfoil orientation can be dynamically controlled in order to maximize
performance. The dynamical complexity of turbulent aerodynamics makes this
optimization problem unapproachable by conventional methods such as classical
control theory, which rely on accurate and tractable analytical models of the
dynamical system at hand. Here we propose to attack this problem through
Reinforcement Learning, a technique that -- by repeated trial-and-error
interactions with the environment -- learns to associate observations with
profitable actions without requiring prior knowledge of the system. We show
that in a simulated environment Reinforcement Learning finds an efficient way
to control a kite so that it can tow a vehicle for long distances. The
algorithm we use is based on a small set of intuitive observations and its
physically transparent interpretation allows to describe the approximately
optimal strategy as a simple list of manoeuvring instructions.
Related papers
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - Inverted Landing in a Small Aerial Robot via Deep Reinforcement Learning
for Triggering and Control of Rotational Maneuvers [11.29285364660789]
Inverted landing in a rapid and robust manner is a challenging feat for aerial robots, especially while depending entirely on onboard sensing and computation.
Previous work has identified a direct causal connection between a series of onboard visual cues and kinematic actions that allow for reliable execution of this challenging aerobatic maneuver in small aerial robots.
In this work, we first utilized Deep Reinforcement Learning and a physics-based simulation to obtain a general, optimal control policy for robust inverted landing.
arXiv Detail & Related papers (2022-09-22T14:38:10Z) - Learning Variable Impedance Control for Aerial Sliding on Uneven
Heterogeneous Surfaces by Proprioceptive and Tactile Sensing [42.27572349747162]
We present a learning-based adaptive control strategy for aerial sliding tasks.
The proposed controller structure combines data-driven and model-based control methods.
Compared to fine-tuned state of the art interaction control methods we achieve reduced tracking error and improved disturbance rejection.
arXiv Detail & Related papers (2022-06-28T16:28:59Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds [96.74836678572582]
We present a learning-based approach that allows rapid online adaptation by incorporating pretrained representations through deep learning.
Neural-Fly achieves precise flight control with substantially smaller tracking error than state-of-the-art nonlinear and adaptive controllers.
arXiv Detail & Related papers (2022-05-13T21:55:28Z) - Learning Pneumatic Non-Prehensile Manipulation with a Mobile Blower [30.032847855193864]
blowing controller must continually adapt to unexpected changes from its actions.
We introduce a multi-frequency version of the spatial action maps framework.
This allows for efficient learning of vision-based policies that effectively combine high-level planning and low-level closed-loop control.
arXiv Detail & Related papers (2022-04-05T17:55:58Z) - TRAIL: Near-Optimal Imitation Learning with Suboptimal Data [100.83688818427915]
We present training objectives that use offline datasets to learn a factored transition model.
Our theoretical analysis shows that the learned latent action space can boost the sample-efficiency of downstream imitation learning.
To learn the latent action space in practice, we propose TRAIL (Transition-Reparametrized Actions for Imitation Learning), an algorithm that learns an energy-based transition model.
arXiv Detail & Related papers (2021-10-27T21:05:00Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - Meta-Learning-Based Robust Adaptive Flight Control Under Uncertain Wind
Conditions [13.00214468719929]
Realtime model learning is challenging for complex dynamical systems, such as drones flying in variable wind conditions.
We propose an online composite adaptation method that treats outputs from a deep neural network as a set of basis functions.
We validate our approach by flying a drone in an open air wind tunnel under varying wind conditions and along challenging trajectories.
arXiv Detail & Related papers (2021-03-02T18:43:59Z) - Learning-based vs Model-free Adaptive Control of a MAV under Wind Gust [0.2770822269241973]
Navigation problems under unknown varying conditions are among the most important and well-studied problems in the control field.
Recent model-free adaptive control methods aim at removing this dependency by learning the physical characteristics of the plant directly from sensor feedback.
We propose a conceptually simple learning-based approach composed of a full state feedback controller, tuned robustly by a deep reinforcement learning framework.
arXiv Detail & Related papers (2021-01-29T10:13:56Z) - Model-Based Meta-Reinforcement Learning for Flight with Suspended
Payloads [69.21503033239985]
Transporting suspended payloads is challenging for autonomous aerial vehicles.
We propose a meta-learning approach that "learns how to learn" models of altered dynamics within seconds of post-connection flight data.
arXiv Detail & Related papers (2020-04-23T17:43:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.