論文の概要: High Performance of Gradient Boosting in Binding Affinity Prediction
- arxiv url: http://arxiv.org/abs/2205.07023v1
- Date: Sat, 14 May 2022 09:48:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-19 04:32:45.336430
- Title: High Performance of Gradient Boosting in Binding Affinity Prediction
- Title(参考訳): 結合親和性予測における勾配ブースティングの高性能化
- Authors: Dmitrii Gavrilev, Nurlybek Amangeldiuly, Sergei Ivanov, Evgeny Burnaev
- Abstract要約: タンパク質リガンド(PL)結合親和性の予測は、薬物発見の鍵である。
直交型決定木(GBDT)におけるPL相互作用機能とPLグラフレベル機能との併用を提案する。
この組み合わせが既存のソリューションより優れていることを示す。
- 参考スコア(独自算出の注目度): 12.323976053967066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prediction of protein-ligand (PL) binding affinity remains the key to drug
discovery. Popular approaches in recent years involve graph neural networks
(GNNs), which are used to learn the topology and geometry of PL complexes.
However, GNNs are computationally heavy and have poor scalability to graph
sizes. On the other hand, traditional machine learning (ML) approaches, such as
gradient-boosted decision trees (GBDTs), are lightweight yet extremely
efficient for tabular data. We propose to use PL interaction features along
with PL graph-level features in GBDT. We show that this combination outperforms
the existing solutions.
- Abstract(参考訳): タンパク質リガンド(PL)結合親和性の予測は、薬物発見の鍵である。
近年の一般的なアプローチはグラフニューラルネットワーク(GNN)であり、PL複合体のトポロジーと幾何学を学ぶのに使われている。
しかし、GNNは計算量が多く、グラフサイズに対してスケーラビリティが低い。
一方、勾配ブースト決定木(GBDT)のような従来の機械学習(ML)アプローチは、表データに対して軽量だが極めて効率的である。
GBDTのPLグラフレベル機能とともにPLインタラクション機能の利用を提案する。
この組み合わせが既存のソリューションより優れていることを示す。
関連論文リスト
- Sketch-GNN: Scalable Graph Neural Networks with Sublinear Training Complexity [30.2972965458946]
グラフネットワーク(GNN)はノード分類などのグラフ学習問題に広く適用されている。
GNNの基盤となるグラフをより大きなサイズにスケールアップする場合、完全なグラフをトレーニングするか、あるいは完全なグラフの隣接とノードのメモリへの埋め込みを維持せざるを得ません。
本稿では,学習時間と記憶量がグラフサイズに比例して増加するスケッチベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-21T18:22:11Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Graph Ladling: Shockingly Simple Parallel GNN Training without
Intermediate Communication [100.51884192970499]
GNNは、グラフを学習するニューラルネットワークの強力なファミリーである。
GNNのスケーリングは、肥大化または拡大によって、不健康な勾配、過度なスムースメント、情報のスカッシングといった問題に悩まされる。
本稿では,現在のGNNの深層化や拡張ではなく,GNNに適したモデルスープをデータ中心の視点で表現することを提案する。
論文 参考訳(メタデータ) (2023-06-18T03:33:46Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - AGNN: Alternating Graph-Regularized Neural Networks to Alleviate
Over-Smoothing [29.618952407794776]
グラフ畳み込み層(GCL)とグラフ埋め込み層(GEL)からなる交代グラフ正規化ニューラルネットワーク(AGNN)を提案する。
GELはラプラシアン埋め込み項を含むグラフ正規化最適化から導かれる。
AGNNは、いくつかの多層または多次グラフニューラルネットワークのパフォーマンス比較を含む、多数の実験を通じて評価されている。
論文 参考訳(メタデータ) (2023-04-14T09:20:03Z) - EIGNN: Efficient Infinite-Depth Graph Neural Networks [51.97361378423152]
グラフニューラルネットワーク(GNN)は多くのアプリケーションでグラフ構造化データのモデリングに広く利用されている。
この制限により、無限深度GNNモデルを提案し、これをEIGNN(Efficient Infinite-Depth Graph Neural Networks)と呼ぶ。
EIGNNは、最近のベースラインよりも長距離依存関係をキャプチャする能力が優れており、常に最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2022-02-22T08:16:58Z) - Representing Long-Range Context for Graph Neural Networks with Global
Attention [37.212747564546156]
本稿では,トランスフォーマーに基づく自己認識を用いて,長距離ペア関係の学習を提案する。
提案手法はGraphTransと呼ばれ,標準のGNNモジュールに代えて置換不変なTransformerモジュールを適用している。
その結果,グラフ構造を持たない純粋学習に基づくアプローチは,グラフ上の高レベルな長距離関係を学習するのに適している可能性が示唆された。
論文 参考訳(メタデータ) (2022-01-21T18:16:21Z) - Graph Neural Networks with Parallel Neighborhood Aggregations for Graph
Classification [14.112444998191698]
グラフニューラルネットワーク(GNN)モデルを用いたグラフ分類に着目し、並列に配置された近傍グラフ演算子のバンクを用いてノード特徴をプリ計算する。
これらのGNNモデルには、事前計算によるトレーニングと推論時間の削減という自然な利点がある。
本研究は,様々な実世界のデータセット上で,開発モデルが最先端の性能を達成することを数値実験により実証する。
論文 参考訳(メタデータ) (2021-11-22T19:19:40Z) - GNNAutoScale: Scalable and Expressive Graph Neural Networks via
Historical Embeddings [51.82434518719011]
GNNAutoScale(GAS)は、任意のメッセージパスGNNを大規模グラフにスケールするためのフレームワークである。
ガスは、前回のトレーニングの繰り返しから過去の埋め込みを利用して計算グラフのサブツリー全体を掘り起こします。
ガスは大規模グラフ上で最先端のパフォーマンスに達する。
論文 参考訳(メタデータ) (2021-06-10T09:26:56Z) - Boost then Convolve: Gradient Boosting Meets Graph Neural Networks [6.888700669980625]
グラデーションブースト決定木(gbdt)は,異種データに対して他の機械学習手法よりも優れていることが示されている。
我々は,gbdt と gnn を共同で訓練し,両世界のベストを勝ち取る新しいアーキテクチャを提案する。
我々のモデルは、GNNの勾配更新に新しい木を適合させることにより、エンドツーエンドの最適化の恩恵を受ける。
論文 参考訳(メタデータ) (2021-01-21T10:46:41Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。