On Statistical Distribution for Adiabatically Isolated Body
- URL: http://arxiv.org/abs/2205.07232v1
- Date: Sun, 15 May 2022 09:33:36 GMT
- Title: On Statistical Distribution for Adiabatically Isolated Body
- Authors: Natalia Gorobey, Alexander Lukyanenko, and A. V. Goltsev
- Abstract summary: The statistical distribution for the case of an adiabatically isolated body was obtained in the framework of covariant quantum theory.
The energy of an isolated system is an external parameter for the modified distribution instead of temperature.
- Score: 62.997667081978825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The statistical distribution for the case of an adiabatically isolated body
was obtained in the framework of covariant quantum theory and Wick's rotation
in the complex time plane. The covariant formulation of the mechanics of an
isolated system lies in the rejection of absolute time and the introduction of
proper time as an independent dynamic variable. The equation of motion of
proper time is the law of conservation of energy. In this case, the energy of
an isolated system is an external parameter for the modified distribution
instead of temperature.
Related papers
- On the entanglement of co-ordinate and momentum degrees of freedom in
noncommutative space [0.0]
We investigate the quantum entanglement induced by phase-space noncommutativity.
The entanglement properties of coordinate and momentum degrees of freedom are studied.
We show that the mere inclusion of non-commutativity of phase-space is not sufficient to generate the entanglement.
arXiv Detail & Related papers (2024-01-05T18:43:47Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Force balance in thermal quantum many-body systems from Noether's
theorem [0.6091702876917281]
We consider a specific position-dependent transformation of the system that consists of a spatial deformation and a corresponding locally resolved change of momenta.
As a consequence, the free energy is an invariant under the transformation.
For the special case of homogeneous shifting, the sum rule states that the average global external force vanishes in thermal equilibrium.
arXiv Detail & Related papers (2022-07-31T17:11:44Z) - Thermal equilibrium in Gaussian dynamical semigroups [77.34726150561087]
We characterize all Gaussian dynamical semigroups in continuous variables quantum systems of n-bosonic modes which have a thermal Gibbs state as a stationary solution.
We also show that Alicki's quantum detailed-balance condition, based on a Gelfand-Naimark-Segal inner product, allows the determination of the temperature dependence of the diffusion and dissipation matrices.
arXiv Detail & Related papers (2022-07-11T19:32:17Z) - Comparison between time-independent and time-dependent quantum systems
in the context of energy, Heisenberg uncertainty, average energy, force,
average force and thermodynamic quantities [0.0]
Exact solutions of time-dependent Schr"odinger equation in presence of time-dependent potential are defined.
Energy and Heisenberg uncertainty relation are pursued for time-independent potential.
Forces acting on a fixed boundary wall as well as average force acting on moving boundary wall are presented.
arXiv Detail & Related papers (2021-10-12T01:20:00Z) - Quantum scattering as a work source [0.0]
We consider a collision between a moving particle and a fixed system, each having internal degrees of freedom.
We identify the regime where the motion of the particle acts as a work source for the joint internal system, leading to energy changes which preserve the entropy.
arXiv Detail & Related papers (2021-08-30T16:43:22Z) - Quantum unitary evolution interspersed with repeated non-unitary
interactions at random times: The method of stochastic Liouville equation,
and two examples of interactions in the context of a tight-binding chain [0.0]
We provide two explicit applications of the formalism in the context of the so-called tight-binding model relevant in various contexts in solid-state physics.
We consider two forms of interactions: reset of quantum dynamics, in which the density operator is at random times reset to its initial form, and projective measurements performed on the system at random times.
arXiv Detail & Related papers (2021-06-27T09:55:13Z) - Bridging the Gap Between the Transient and the Steady State of a
Nonequilibrium Quantum System [58.720142291102135]
Many-body quantum systems in nonequilibrium remain one of the frontiers of many-body physics.
Recent work on strongly correlated electrons in DC electric fields illustrated that the system may evolve through successive quasi-thermal states.
We demonstrate an extrapolation scheme that uses the short-time transient calculation to obtain the retarded quantities.
arXiv Detail & Related papers (2021-01-04T06:23:01Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z) - Feynman Propagator for a System of Interacting Scalar Particles in the
Fokker Theory [62.997667081978825]
The functional integral on the generalized phase space is defined as the initial one in quantum theory.
The measure of integration in the generalized configuration space of world particle lines is determined.
A modification of the propagator is proposed, in which the role of independent time parameters is taken by the time coordinates of the particles in Minkowski space.
arXiv Detail & Related papers (2020-02-10T09:09:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.