Force balance in thermal quantum many-body systems from Noether's
theorem
- URL: http://arxiv.org/abs/2208.00473v2
- Date: Mon, 17 Oct 2022 21:35:12 GMT
- Title: Force balance in thermal quantum many-body systems from Noether's
theorem
- Authors: Sophie Hermann and Matthias Schmidt
- Abstract summary: We consider a specific position-dependent transformation of the system that consists of a spatial deformation and a corresponding locally resolved change of momenta.
As a consequence, the free energy is an invariant under the transformation.
For the special case of homogeneous shifting, the sum rule states that the average global external force vanishes in thermal equilibrium.
- Score: 0.6091702876917281
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the consequences of invariance properties of the free energy of
spatially inhomogeneous quantum many-body systems. We consider a specific
position-dependent transformation of the system that consists of a spatial
deformation and a corresponding locally resolved change of momenta. This
operator transformation is canonical and hence equivalent to a unitary
transformation on the underlying Hilbert space of the system. As a consequence,
the free energy is an invariant under the transformation. Noether's theorem for
invariant variations then allows to derive an exact sum rule, which we show to
be the locally resolved equilibrium one-body force balance. For the special
case of homogeneous shifting, the sum rule states that the average global
external force vanishes in thermal equilibrium.
Related papers
- How to Partition a Quantum Observable [0.0]
We present a partition of quantum observables in an open quantum system which is inherited from the division of the underlying Hilbert space or configuration space.
This partition leads to the definition of an inhomogeneous continuity equation for generic, non-local observables.
We conclude that Hilbert-space partitioning is the only partition of the von Neumann entropy which is consistent with the Laws of Thermodynamics.
arXiv Detail & Related papers (2024-02-27T21:49:27Z) - Classical stochastic representation of quantum mechanics [0.0]
We show that the dynamics of a quantum system can be represented by the dynamics of an underlying classical systems obeying the Hamilton equations of motion.
The probabilistic character of quantum mechanics is devised by treating the wave function as a variable.
arXiv Detail & Related papers (2023-07-31T21:02:43Z) - Quantum stochastic thermodynamics: A semiclassical theory in phase space [0.0]
A formalism for quantum many-body systems is proposed through a semiclassical treatment in phase space.
We use a Fokker-Planck equation as the dynamics at the mesoscopic level.
We define thermodynamic quantities based on the trajectories of the phase-space distribution.
arXiv Detail & Related papers (2023-03-10T14:12:14Z) - Entanglement resolution of free Dirac fermions on a torus [68.8204255655161]
We first evaluate the SRE for massless Dirac fermions in a system at finite temperature and size.
The charge-dependent entropies turn out to be equally distributed among all the symmetry sectors at leading order.
arXiv Detail & Related papers (2022-12-14T14:54:35Z) - Thermal equilibrium in Gaussian dynamical semigroups [77.34726150561087]
We characterize all Gaussian dynamical semigroups in continuous variables quantum systems of n-bosonic modes which have a thermal Gibbs state as a stationary solution.
We also show that Alicki's quantum detailed-balance condition, based on a Gelfand-Naimark-Segal inner product, allows the determination of the temperature dependence of the diffusion and dissipation matrices.
arXiv Detail & Related papers (2022-07-11T19:32:17Z) - On Statistical Distribution for Adiabatically Isolated Body [62.997667081978825]
The statistical distribution for the case of an adiabatically isolated body was obtained in the framework of covariant quantum theory.
The energy of an isolated system is an external parameter for the modified distribution instead of temperature.
arXiv Detail & Related papers (2022-05-15T09:33:36Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Space of initial conditions and universality in nonequilibrium quantum
dynamics [0.0]
We study the one-dimensional ferromagnets in the regime of spontaneously broken symmetry.
We analyze the expectation value of local operators for the infinite-dimensional space of initial conditions of domain wall type.
arXiv Detail & Related papers (2022-02-25T10:53:27Z) - Quantum Relativity of Subsystems [58.720142291102135]
We show that different reference frame perspectives induce different sets of subsystem observable algebras, which leads to a gauge-invariant, frame-dependent notion of subsystems and entanglement.
Such a QRF perspective does not inherit the distinction between subsystems in terms of the corresponding tensor factorizability of the kinematical Hilbert space and observable algebra.
Since the condition for this to occur is contingent on the choice of QRF, the notion of subsystem locality is frame-dependent.
arXiv Detail & Related papers (2021-03-01T19:00:01Z) - Entropy scaling law and the quantum marginal problem [0.0]
Quantum many-body states that frequently appear in physics often obey an entropy scaling law.
We prove a restricted version of this conjecture for translationally invariant systems in two spatial dimensions.
We derive a closed-form expression for the maximum entropy density compatible with those marginals.
arXiv Detail & Related papers (2020-10-14T22:30:37Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.