論文の概要: Clinical outcome prediction under hypothetical interventions -- a
representation learning framework for counterfactual reasoning
- arxiv url: http://arxiv.org/abs/2205.07234v1
- Date: Sun, 15 May 2022 09:41:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-17 14:28:48.565916
- Title: Clinical outcome prediction under hypothetical interventions -- a
representation learning framework for counterfactual reasoning
- Title(参考訳): 仮説的介入による臨床結果予測--反実的推論のための表現学習フレームワーク
- Authors: Yikuan Li, Mohammad Mamouei, Shishir Rao, Abdelaali Hassaine, Dexter
Canoy, Thomas Lukasiewicz, Kazem Rahimi, Gholamreza Salimi-Khorshidi
- Abstract要約: 本稿では,リスクモデルの組込み特性として,対実的説明の提供を考慮した新しい表現学習フレームワークを提案する。
提案する枠組みは, 研究者や臨床医がパーソナライズされたケアを改善するのに役立つ可能性が示唆された。
- 参考スコア(独自算出の注目度): 31.97813934144506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most machine learning (ML) models are developed for prediction only; offering
no option for causal interpretation of their predictions or
parameters/properties. This can hamper the health systems' ability to employ ML
models in clinical decision-making processes, where the need and desire for
predicting outcomes under hypothetical investigations (i.e., counterfactual
reasoning/explanation) is high. In this research, we introduce a new
representation learning framework (i.e., partial concept bottleneck), which
considers the provision of counterfactual explanations as an embedded property
of the risk model. Despite architectural changes necessary for jointly
optimising for prediction accuracy and counterfactual reasoning, the accuracy
of our approach is comparable to prediction-only models. Our results suggest
that our proposed framework has the potential to help researchers and
clinicians improve personalised care (e.g., by investigating the hypothetical
differential effects of interventions)
- Abstract(参考訳): ほとんどの機械学習(ML)モデルは予測のみのために開発され、予測やパラメータ/プロパティの因果解釈の選択肢は提供されない。
これは、仮説的調査(すなわち、反事実的推論/説明)による結果を予測する必要性と欲求が高い臨床意思決定プロセスにおいて、MLモデルを採用する健康システムの能力を阻害する可能性がある。
本研究では,新たな表現学習フレームワーク(部分的概念ボトルネック)を導入し,リスクモデルの組込み特性として対実的説明の提供を検討する。
予測精度と対実的推論を協調的に最適化するために必要なアーキテクチャ的変化にもかかわらず、我々の手法の精度は予測のみのモデルに匹敵する。
以上の結果から,提案フレームワークは,研究者や臨床医のパーソナライズドケア(介入の仮説的差異など)の改善に役立つ可能性が示唆された。
関連論文リスト
- Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - Ethical considerations of use of hold-out sets in clinical prediction model management [0.4194295877935868]
我々は、善意、非正当性、自律性、正義の倫理的原則に焦点をあてる。
また,様々なホールドアウトセットサンプリング手法による統計的問題についても論じる。
論文 参考訳(メタデータ) (2024-06-05T11:42:46Z) - Uncertainty Quantification on Clinical Trial Outcome Prediction [37.238845949535616]
本稿では,不確実性の定量化を臨床治験結果の予測に取り入れることを提案する。
私たちの主な目標は、ニュアンスドの違いを識別するモデルの能力を強化することです。
我々は目的を達成するために選択的な分類手法を採用した。
論文 参考訳(メタデータ) (2024-01-07T13:48:05Z) - This Patient Looks Like That Patient: Prototypical Networks for
Interpretable Diagnosis Prediction from Clinical Text [56.32427751440426]
臨床実践においては、そのようなモデルは正確であるだけでなく、医師に解釈可能で有益な結果を与える必要がある。
本稿では,プロトタイプネットワークに基づく新しい手法であるProtoPatientを紹介する。
利用可能な2つの臨床データセット上でモデルを評価し、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-16T10:12:07Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Learning to Predict with Supporting Evidence: Applications to Clinical
Risk Prediction [9.199022926064009]
機械学習モデルがヘルスケアに与える影響は、医療専門家がこれらのモデルによって予測される信頼度に依存する。
予測が信頼されるべき理由に関するドメイン関連証拠を,臨床専門性のある人に提供するための方法を提示する。
論文 参考訳(メタデータ) (2021-03-04T00:26:32Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - A scoping review of causal methods enabling predictions under
hypothetical interventions [4.801185839732629]
意思決定を支援するために予測モデルを使用する場合、仮説的な介入の下で結果を予測する必要があることが多い。
我々は,2019年12月までに出版された文献を体系的にレビューし,仮説的介入による予測モデルの使用を可能にするために因果的考察を用いた健康領域の論文を考察した。
臨床予測モデルへの仮説的介入の下での予測を可能にするための2つの幅広い方法論的アプローチが存在する。
論文 参考訳(メタデータ) (2020-11-19T13:36:26Z) - When Does Uncertainty Matter?: Understanding the Impact of Predictive
Uncertainty in ML Assisted Decision Making [68.19284302320146]
我々は,異なるレベルの専門知識を持つ人々が,異なるタイプの予測不確実性にどう反応するかを評価するために,ユーザスタディを実施している。
その結果,後続の予測分布を示すことは,MLモデルの予測との相違点が小さくなることがわかった。
このことは、後続の予測分布は、人間の分布の種類や専門性を考慮し、注意を払って使用するべき有用な決定支援として役立つ可能性があることを示唆している。
論文 参考訳(メタデータ) (2020-11-12T02:23:53Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z) - Interpretability of machine learning based prediction models in
healthcare [8.799886951659627]
本稿では,医療分野における機械学習の実践的解釈可能性について概説する。
我々は、高度な医療問題において機械学習による意思決定を可能にするアルゴリズムソリューションの開発の重要性を強調した。
論文 参考訳(メタデータ) (2020-02-20T07:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。