Classifiers are Better Experts for Controllable Text Generation
- URL: http://arxiv.org/abs/2205.07276v1
- Date: Sun, 15 May 2022 12:58:35 GMT
- Title: Classifiers are Better Experts for Controllable Text Generation
- Authors: Askhat Sitdikov, Nikita Balagansky, Daniil Gavrilov, Alexander Markov
- Abstract summary: We show that the proposed method significantly outperforms recent PPLM, GeDi, and DExperts on PPL and sentiment accuracy based on the external classifier of generated texts.
The same time, it is also easier to implement and tune, and has significantly fewer restrictions and requirements.
- Score: 63.17266060165098
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a simple method for controllable text generation based on
weighting logits produced, namely CAIF sampling. Using an arbitrary third-party
text classifier, we adjust a small part of a language model's logits and guide
text generation towards or away from classifier prediction. We show that the
proposed method significantly outperforms recent PPLM, GeDi, and DExperts on
PPL and sentiment accuracy based on the external classifier of generated texts.
A the same time, it is also easier to implement and tune, and has significantly
fewer restrictions and requirements.
Related papers
- Retrieval is Accurate Generation [99.24267226311157]
We introduce a novel method that selects context-aware phrases from a collection of supporting documents.
Our model achieves the best performance and the lowest latency among several retrieval-augmented baselines.
arXiv Detail & Related papers (2024-02-27T14:16:19Z) - ToBlend: Token-Level Blending With an Ensemble of LLMs to Attack AI-Generated Text Detection [6.27025292177391]
ToBlend is a novel token-level ensemble text generation method to challenge the robustness of current AI-content detection approaches.
We find ToBlend significantly drops the performance of most mainstream AI-content detection methods.
arXiv Detail & Related papers (2024-02-17T02:25:57Z) - Principled Gradient-based Markov Chain Monte Carlo for Text Generation [77.46654898866291]
We propose several faithful gradient-based sampling algorithms to sample from the target energy-based text distribution correctly.
We demonstrate that faithful samplers are able to generate more fluent text while adhering to the control objectives better.
arXiv Detail & Related papers (2023-12-29T18:00:56Z) - Controlled Text Generation via Language Model Arithmetic [7.687678490751105]
We introduce model arithmetic, a novel inference framework for composing and biasing Large Language Models.
We show that model arithmetic allows fine-grained control of generated text while outperforming state-of-the-art on the task of toxicity reduction.
arXiv Detail & Related papers (2023-11-24T13:41:12Z) - Copy Is All You Need [66.00852205068327]
We formulate text generation as progressively copying text segments from an existing text collection.
Our approach achieves better generation quality according to both automatic and human evaluations.
Our approach attains additional performance gains by simply scaling up to larger text collections.
arXiv Detail & Related papers (2023-07-13T05:03:26Z) - Controlling Pre-trained Language Models for Grade-Specific Text
Simplification [22.154454849167077]
We study how different control mechanisms impact the adequacy and simplicity of text simplification systems.
We introduce a simple method that predicts the edit operations required for simplifying a text for a specific grade level on an instance-per-instance basis.
arXiv Detail & Related papers (2023-05-24T10:29:45Z) - FAST: Improving Controllability for Text Generation with Feedback Aware
Self-Training [25.75982440355576]
Controllable text generation systems often leverage control codes to direct various properties of the output like style and length.
Inspired by recent work on causal inference for NLP, this paper reveals a previously overlooked flaw in these control code-based conditional text generation algorithms.
We propose two simple techniques to reduce these correlations in training sets.
arXiv Detail & Related papers (2022-10-06T19:00:51Z) - Data Augmentation in Natural Language Processing: A Novel Text
Generation Approach for Long and Short Text Classifiers [8.19984844136462]
We present and evaluate a text generation method suitable to increase the performance of classifiers for long and short texts.
In a simulated low data regime additive accuracy gains of up to 15.53% are achieved.
We discuss implications and patterns for the successful application of our approach on different types of datasets.
arXiv Detail & Related papers (2021-03-26T13:16:07Z) - Improving Text Generation with Student-Forcing Optimal Transport [122.11881937642401]
We propose using optimal transport (OT) to match the sequences generated in training and testing modes.
An extension is also proposed to improve the OT learning, based on the structural and contextual information of the text sequences.
The effectiveness of the proposed method is validated on machine translation, text summarization, and text generation tasks.
arXiv Detail & Related papers (2020-10-12T19:42:25Z) - POINTER: Constrained Progressive Text Generation via Insertion-based
Generative Pre-training [93.79766670391618]
We present POINTER, a novel insertion-based approach for hard-constrained text generation.
The proposed method operates by progressively inserting new tokens between existing tokens in a parallel manner.
The resulting coarse-to-fine hierarchy makes the generation process intuitive and interpretable.
arXiv Detail & Related papers (2020-05-01T18:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.