Data Augmentation in Natural Language Processing: A Novel Text
Generation Approach for Long and Short Text Classifiers
- URL: http://arxiv.org/abs/2103.14453v1
- Date: Fri, 26 Mar 2021 13:16:07 GMT
- Title: Data Augmentation in Natural Language Processing: A Novel Text
Generation Approach for Long and Short Text Classifiers
- Authors: Markus Bayer, Marc-Andr\'e Kaufhold, Bj\"orn Buchhold, Marcel Keller,
J\"org Dallmeyer and Christian Reuter
- Abstract summary: We present and evaluate a text generation method suitable to increase the performance of classifiers for long and short texts.
In a simulated low data regime additive accuracy gains of up to 15.53% are achieved.
We discuss implications and patterns for the successful application of our approach on different types of datasets.
- Score: 8.19984844136462
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many cases of machine learning, research suggests that the development of
training data might have a higher relevance than the choice and modelling of
classifiers themselves. Thus, data augmentation methods have been developed to
improve classifiers by artificially created training data. In NLP, there is the
challenge of establishing universal rules for text transformations which
provide new linguistic patterns. In this paper, we present and evaluate a text
generation method suitable to increase the performance of classifiers for long
and short texts. We achieved promising improvements when evaluating short as
well as long text tasks with the enhancement by our text generation method. In
a simulated low data regime additive accuracy gains of up to 15.53% are
achieved. As the current track of these constructed regimes is not universally
applicable, we also show major improvements in several real world low data
tasks (up to +4.84 F1 score). Since we are evaluating the method from many
perspectives, we also observe situations where the method might not be
suitable. We discuss implications and patterns for the successful application
of our approach on different types of datasets.
Related papers
- Enhancing Text Generation in Joint NLG/NLU Learning Through Curriculum Learning, Semi-Supervised Training, and Advanced Optimization Techniques [0.0]
This research paper developed a novel approach to improve text generation in the context of joint Natural Language Generation (NLG) and Natural Language Understanding (NLU) learning.
The data is prepared by gathering and preprocessing annotated datasets, including cleaning, tokenization, stemming, and stop-word removal.
Transformer-based encoders and decoders, capturing long range dependencies and improving source-target sequence modelling.
Reinforcement learning with policy gradient techniques, semi-supervised training, improved attention mechanisms, and differentiable approximations are employed to fine-tune the models and handle complex linguistic tasks effectively.
arXiv Detail & Related papers (2024-10-17T12:43:49Z) - Retrieval is Accurate Generation [99.24267226311157]
We introduce a novel method that selects context-aware phrases from a collection of supporting documents.
Our model achieves the best performance and the lowest latency among several retrieval-augmented baselines.
arXiv Detail & Related papers (2024-02-27T14:16:19Z) - A Simple yet Efficient Ensemble Approach for AI-generated Text Detection [0.5840089113969194]
Large Language Models (LLMs) have demonstrated remarkable capabilities in generating text that closely resembles human writing.
It is essential to build automated approaches capable of distinguishing between artificially generated text and human-authored text.
We propose a simple yet efficient solution by ensembling predictions from multiple constituent LLMs.
arXiv Detail & Related papers (2023-11-06T13:11:02Z) - Language Model Decoding as Direct Metrics Optimization [87.68281625776282]
Current decoding methods struggle to generate texts that align with human texts across different aspects.
In this work, we frame decoding from a language model as an optimization problem with the goal of strictly matching the expected performance with human texts.
We prove that this induced distribution is guaranteed to improve the perplexity on human texts, which suggests a better approximation to the underlying distribution of human texts.
arXiv Detail & Related papers (2023-10-02T09:35:27Z) - AugGPT: Leveraging ChatGPT for Text Data Augmentation [59.76140039943385]
We propose a text data augmentation approach based on ChatGPT (named AugGPT)
AugGPT rephrases each sentence in the training samples into multiple conceptually similar but semantically different samples.
Experiment results on few-shot learning text classification tasks show the superior performance of the proposed AugGPT approach.
arXiv Detail & Related papers (2023-02-25T06:58:16Z) - Classifiers are Better Experts for Controllable Text Generation [63.17266060165098]
We show that the proposed method significantly outperforms recent PPLM, GeDi, and DExperts on PPL and sentiment accuracy based on the external classifier of generated texts.
The same time, it is also easier to implement and tune, and has significantly fewer restrictions and requirements.
arXiv Detail & Related papers (2022-05-15T12:58:35Z) - To Augment or Not to Augment? A Comparative Study on Text Augmentation
Techniques for Low-Resource NLP [0.0]
We investigate three categories of text augmentation methodologies which perform changes on the syntax.
We compare them on part-of-speech tagging, dependency parsing and semantic role labeling for a diverse set of language families.
Our results suggest that the augmentation techniques can further improve over strong baselines based on mBERT.
arXiv Detail & Related papers (2021-11-18T10:52:48Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore.
We show how to achieve up to a 6x speed-up in inference speed while retaining comparable performance.
arXiv Detail & Related papers (2021-09-09T12:32:28Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z) - DeCLUTR: Deep Contrastive Learning for Unsupervised Textual
Representations [4.36561468436181]
We present DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations.
Our approach closes the performance gap between unsupervised and supervised pretraining for universal sentence encoders.
Our code and pretrained models are publicly available and can be easily adapted to new domains or used to embed unseen text.
arXiv Detail & Related papers (2020-06-05T20:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.