Emergent spacetimes from Hermitian and non-Hermitian quantum dynamics
- URL: http://arxiv.org/abs/2205.07429v2
- Date: Tue, 14 Nov 2023 04:08:13 GMT
- Title: Emergent spacetimes from Hermitian and non-Hermitian quantum dynamics
- Authors: Chenwei Lv and Qi Zhou
- Abstract summary: We show that quantum dynamics of any systems with $SU (1,1)$ symmetry give rise to emergent Anti-de Sitter spacetimes in 2+1 dimensions.
Our work provides a transparent means to optimize quantum controls by exploiting shortest paths in the emergent spacetimes.
- Score: 3.113839193781378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that quantum dynamics of any systems with $SU(1,1)$ symmetry give
rise to emergent Anti-de Sitter spacetimes in 2+1 dimensions (AdS$_{2+1}$).
Using the continuous circuit depth, a quantum evolution is mapped to a
trajectory in AdS$_{2+1}$. Whereas the time measured in laboratories becomes
either the proper time or the proper distance, quench dynamics follow geodesics
of AdS$_{2+1}$. Such a geometric approach provides a unified interpretation of
a wide range of prototypical phenomena that appear disconnected. For instance,
the light cone of AdS$_{2+1}$ underlies expansions of unitary fermions released
from harmonic traps, the onsite of parametric amplifications, and the
exceptional points that represent the $PT$ symmetry breaking in non-Hermitian
systems. Our work provides a transparent means to optimize quantum controls by
exploiting shortest paths in the emergent spacetimes. It also allows
experimentalists to engineer emergent spacetimes and induce tunnelings between
different AdS$_{2+1}$.
Related papers
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.
This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.
Even with sublinear barriers, we use Feynman-Kac techniques to lift classical to quantum ones establishing tight lower bound $T_mathrmmix = 2Omega(nalpha)$.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - Small Circle Expansion for Adjoint QCD$_2$ with Periodic Boundary Conditions [0.0]
Supersymmetry is found at the adjoint mass-squared $g2 hvee/ (2pi)$, where $hvee$ is the dual Coxeter number of $G$.
We generalize our results to other gauge groupsG$, for which supersymmetry is found at the adjoint mass-squared $g2 hvee/ (2pi)$, where $hvee$ is the dual Coxeter number of $G$.
arXiv Detail & Related papers (2024-06-24T19:07:42Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - \boldmath $SU(\infty)$ Quantum Gravity: Emergence of Gravity in an Infinitely Divisible Quantum Universe [0.0]
$SU(infty)$-QGR is a foundationally quantum approach to gravity.
It assumes that the Hilbert space of the Universe as a whole represents the symmetry group $SU(infty)$.
We show that the global $SU(infty)$ symmetry manifests itself through the entanglement of subsystems with the rest of the Universe.
arXiv Detail & Related papers (2023-01-07T09:19:15Z) - A New Look at the $C^{0}$-formulation of the Strong Cosmic Censorship
Conjecture [68.8204255655161]
We argue that for generic black hole parameters as initial conditions for Einstein equations, the metric is $C0$-extendable to a larger Lorentzian manifold.
We prove it violates the "complexity=volume" conjecture for a low-temperature hyperbolic AdS$_d+1$ black hole dual to a CFT living on a ($d-1$)-dimensional hyperboloid $H_d-1$.
arXiv Detail & Related papers (2022-06-17T12:14:33Z) - Complementarity in quantum walks [0.08896991256227595]
We study discrete-time quantum walks on $d$-cycles with a position and coin-dependent phase-shift.
For prime $d$ there exists a strong complementarity property between the eigenvectors of two quantum walk evolution operators.
We show that the complementarity is still present in the continuous version of this model, which corresponds to a one-dimensional Dirac particle.
arXiv Detail & Related papers (2022-05-11T12:47:59Z) - On quantum algorithms for the Schr\"odinger equation in the
semi-classical regime [27.175719898694073]
We consider Schr"odinger's equation in the semi-classical regime.
Such a Schr"odinger equation finds many applications, including in Born-Oppenheimer molecular dynamics and Ehrenfest dynamics.
arXiv Detail & Related papers (2021-12-25T20:01:54Z) - Straddling-gates problem in multipartite quantum systems [20.428960719376164]
We study a variant of quantum circuit complexity, the binding complexity.
We show that any $m$partite Schmidt decomposable state has binding complexity linear in $m$, which hints its multi-separable property.
arXiv Detail & Related papers (2021-10-13T16:28:12Z) - Quantum squeezing and sensing with pseudo anti-parity-time symmetry [0.0]
We construct a quantum pseudo-anti-$mathcalPT$ symmetry in a two-mode bosonic system without involving Langevin noises.
We show that the spontaneous pseudo-$mathcalAPT$ symmetry breaking leads to an exceptional point.
Such dramatic changes of squeezing factors and quantum dynamics near the exceptional point are utilized for ultra-precision quantum sensing.
arXiv Detail & Related papers (2021-08-29T16:28:28Z) - The Geometry of Time in Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We continue the study of nonrelativistic quantum gravity associated with a family of Ricci flow equations.
This topological gravity is of the cohomological type, and it exhibits an $cal N=2$ extended BRST symmetry.
We demonstrate a standard one-step BRST gauge-fixing of a theory whose fields are $g_ij$, $ni$ and $n$, and whose gauge symmetries consist of (i) the topological deformations of $g_ij$, and (ii) the ultralocal nonrelativistic limit of space
arXiv Detail & Related papers (2020-11-12T06:57:10Z) - Emergent $\mathcal{PT}$ symmetry in a double-quantum-dot circuit QED
set-up [0.0]
We show that a non-Hermitian Hamiltonian emerges naturally in a double-quantum-dot-circuit-QED set-up.
Our results pave the way for an on-chip realization of a potentially scalable non-Hermitian system.
arXiv Detail & Related papers (2020-04-16T09:08:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.