Topologically Persistent Features-based Object Recognition in Cluttered
Indoor Environments
- URL: http://arxiv.org/abs/2205.07479v1
- Date: Mon, 16 May 2022 07:01:16 GMT
- Title: Topologically Persistent Features-based Object Recognition in Cluttered
Indoor Environments
- Authors: Ekta U. Samani and Ashis G. Banerjee
- Abstract summary: Recognition of occluded objects in unseen indoor environments is a challenging problem for mobile robots.
This work proposes a new slicing-based topological descriptor that captures the 3D shape of object point clouds.
It yields similarities between the descriptors of the occluded and the corresponding unoccluded objects, enabling object unity-based recognition.
- Score: 1.2691047660244335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recognition of occluded objects in unseen indoor environments is a
challenging problem for mobile robots. This work proposes a new slicing-based
topological descriptor that captures the 3D shape of object point clouds to
address this challenge. It yields similarities between the descriptors of the
occluded and the corresponding unoccluded objects, enabling object unity-based
recognition using a library of trained models. The descriptor is obtained by
partitioning an object's point cloud into multiple 2D slices and constructing
filtrations (nested sequences of simplicial complexes) on the slices to mimic
further slicing of the slices, thereby capturing detailed shapes through
persistent homology-generated features. We use nine different sequences of
cluttered scenes from a benchmark dataset for performance evaluation. Our
method outperforms two state-of-the-art deep learning-based point cloud
classification methods, namely, DGCNN and SimpleView.
Related papers
- Object-Centric Multiple Object Tracking [124.30650395969126]
This paper proposes a video object-centric model for multiple-object tracking pipelines.
It consists of an index-merge module that adapts the object-centric slots into detection outputs and an object memory module.
Benefited from object-centric learning, we only require sparse detection labels for object localization and feature binding.
arXiv Detail & Related papers (2023-09-01T03:34:12Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - OGC: Unsupervised 3D Object Segmentation from Rigid Dynamics of Point
Clouds [4.709764624933227]
We propose the first unsupervised method, called OGC, to simultaneously identify multiple 3D objects in a single forward pass.
We extensively evaluate our method on five datasets, demonstrating the superior performance for object part instance segmentation.
arXiv Detail & Related papers (2022-10-10T07:01:08Z) - Learning Local Displacements for Point Cloud Completion [93.54286830844134]
We propose a novel approach aimed at object and semantic scene completion from a partial scan represented as a 3D point cloud.
Our architecture relies on three novel layers that are used successively within an encoder-decoder structure.
We evaluate both architectures on object and indoor scene completion tasks, achieving state-of-the-art performance.
arXiv Detail & Related papers (2022-03-30T18:31:37Z) - Discovering Objects that Can Move [55.743225595012966]
We study the problem of object discovery -- separating objects from the background without manual labels.
Existing approaches utilize appearance cues, such as color, texture, and location, to group pixels into object-like regions.
We choose to focus on dynamic objects -- entities that can move independently in the world.
arXiv Detail & Related papers (2022-03-18T21:13:56Z) - VIN: Voxel-based Implicit Network for Joint 3D Object Detection and
Segmentation for Lidars [12.343333815270402]
A unified neural network structure is presented for joint 3D object detection and point cloud segmentation.
We leverage rich supervision from both detection and segmentation labels rather than using just one of them.
arXiv Detail & Related papers (2021-07-07T02:16:20Z) - Group-Free 3D Object Detection via Transformers [26.040378025818416]
We present a simple yet effective method for directly detecting 3D objects from the 3D point cloud.
Our method computes the feature of an object from all the points in the point cloud with the help of an attention mechanism in the Transformers citevaswaniattention.
With few bells and whistles, the proposed method achieves state-of-the-art 3D object detection performance on two widely used benchmarks, ScanNet V2 and SUN RGB-D.
arXiv Detail & Related papers (2021-04-01T17:59:36Z) - 3D Object Classification on Partial Point Clouds: A Practical
Perspective [91.81377258830703]
A point cloud is a popular shape representation adopted in 3D object classification.
This paper introduces a practical setting to classify partial point clouds of object instances under any poses.
A novel algorithm in an alignment-classification manner is proposed in this paper.
arXiv Detail & Related papers (2020-12-18T04:00:56Z) - Cylindrical Convolutional Networks for Joint Object Detection and
Viewpoint Estimation [76.21696417873311]
We introduce a learnable module, cylindrical convolutional networks (CCNs), that exploit cylindrical representation of a convolutional kernel defined in the 3D space.
CCNs extract a view-specific feature through a view-specific convolutional kernel to predict object category scores at each viewpoint.
Our experiments demonstrate the effectiveness of the cylindrical convolutional networks on joint object detection and viewpoint estimation.
arXiv Detail & Related papers (2020-03-25T10:24:58Z) - Object as Hotspots: An Anchor-Free 3D Object Detection Approach via
Firing of Hotspots [37.16690737208046]
We argue for an approach opposite to existing methods using object-level anchors.
Inspired by compositional models, we propose an object as composition of its interior non-empty voxels, termed hotspots.
Based on OHS, we propose an anchor-free detection head with a novel ground truth assignment strategy.
arXiv Detail & Related papers (2019-12-30T03:02:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.