OGC: Unsupervised 3D Object Segmentation from Rigid Dynamics of Point
Clouds
- URL: http://arxiv.org/abs/2210.04458v1
- Date: Mon, 10 Oct 2022 07:01:08 GMT
- Title: OGC: Unsupervised 3D Object Segmentation from Rigid Dynamics of Point
Clouds
- Authors: Ziyang Song, Bo Yang
- Abstract summary: We propose the first unsupervised method, called OGC, to simultaneously identify multiple 3D objects in a single forward pass.
We extensively evaluate our method on five datasets, demonstrating the superior performance for object part instance segmentation.
- Score: 4.709764624933227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the problem of 3D object segmentation from raw point
clouds. Unlike all existing methods which usually require a large amount of
human annotations for full supervision, we propose the first unsupervised
method, called OGC, to simultaneously identify multiple 3D objects in a single
forward pass, without needing any type of human annotations. The key to our
approach is to fully leverage the dynamic motion patterns over sequential point
clouds as supervision signals to automatically discover rigid objects. Our
method consists of three major components, 1) the object segmentation network
to directly estimate multi-object masks from a single point cloud frame, 2) the
auxiliary self-supervised scene flow estimator, and 3) our core object geometry
consistency component. By carefully designing a series of loss functions, we
effectively take into account the multi-object rigid consistency and the object
shape invariance in both temporal and spatial scales. This allows our method to
truly discover the object geometry even in the absence of annotations. We
extensively evaluate our method on five datasets, demonstrating the superior
performance for object part instance segmentation and general object
segmentation in both indoor and the challenging outdoor scenarios.
Related papers
- 3D-Aware Instance Segmentation and Tracking in Egocentric Videos [107.10661490652822]
Egocentric videos present unique challenges for 3D scene understanding.
This paper introduces a novel approach to instance segmentation and tracking in first-person video.
By incorporating spatial and temporal cues, we achieve superior performance compared to state-of-the-art 2D approaches.
arXiv Detail & Related papers (2024-08-19T10:08:25Z) - ObjectCarver: Semi-automatic segmentation, reconstruction and separation of 3D objects [44.38881095466177]
Implicit neural fields have made remarkable progress in reconstructing 3D surfaces from multiple images.
Previous work has attempted to tackle this problem by introducing a framework to train separate signed distance fields.
We introduce our method, ObjectCarver, to tackle the problem of object separation from just click input in a single view.
arXiv Detail & Related papers (2024-07-26T22:13:20Z) - Part2Object: Hierarchical Unsupervised 3D Instance Segmentation [31.44173252707684]
Unsupervised 3D instance segmentation aims to segment objects from a 3D point cloud without any annotations.
Part2Object employs multi-layer clustering from points to object parts and objects, allowing objects to manifest at any layer.
We propose Hi-Mask3D to support hierarchical 3D object part and instance segmentation.
arXiv Detail & Related papers (2024-07-14T05:18:15Z) - Object-Centric Multiple Object Tracking [124.30650395969126]
This paper proposes a video object-centric model for multiple-object tracking pipelines.
It consists of an index-merge module that adapts the object-centric slots into detection outputs and an object memory module.
Benefited from object-centric learning, we only require sparse detection labels for object localization and feature binding.
arXiv Detail & Related papers (2023-09-01T03:34:12Z) - Contrastive Lift: 3D Object Instance Segmentation by Slow-Fast
Contrastive Fusion [110.84357383258818]
We propose a novel approach to lift 2D segments to 3D and fuse them by means of a neural field representation.
The core of our approach is a slow-fast clustering objective function, which is scalable and well-suited for scenes with a large number of objects.
Our approach outperforms the state-of-the-art on challenging scenes from the ScanNet, Hypersim, and Replica datasets.
arXiv Detail & Related papers (2023-06-07T17:57:45Z) - Image Segmentation-based Unsupervised Multiple Objects Discovery [1.7674345486888503]
Unsupervised object discovery aims to localize objects in images.
We propose a fully unsupervised, bottom-up approach, for multiple objects discovery.
We provide state-of-the-art results for both unsupervised class-agnostic object detection and unsupervised image segmentation.
arXiv Detail & Related papers (2022-12-20T09:48:24Z) - Topologically Persistent Features-based Object Recognition in Cluttered
Indoor Environments [1.2691047660244335]
Recognition of occluded objects in unseen indoor environments is a challenging problem for mobile robots.
This work proposes a new slicing-based topological descriptor that captures the 3D shape of object point clouds.
It yields similarities between the descriptors of the occluded and the corresponding unoccluded objects, enabling object unity-based recognition.
arXiv Detail & Related papers (2022-05-16T07:01:16Z) - Discovering Objects that Can Move [55.743225595012966]
We study the problem of object discovery -- separating objects from the background without manual labels.
Existing approaches utilize appearance cues, such as color, texture, and location, to group pixels into object-like regions.
We choose to focus on dynamic objects -- entities that can move independently in the world.
arXiv Detail & Related papers (2022-03-18T21:13:56Z) - VIN: Voxel-based Implicit Network for Joint 3D Object Detection and
Segmentation for Lidars [12.343333815270402]
A unified neural network structure is presented for joint 3D object detection and point cloud segmentation.
We leverage rich supervision from both detection and segmentation labels rather than using just one of them.
arXiv Detail & Related papers (2021-07-07T02:16:20Z) - Objects are Different: Flexible Monocular 3D Object Detection [87.82253067302561]
We propose a flexible framework for monocular 3D object detection which explicitly decouples the truncated objects and adaptively combines multiple approaches for object depth estimation.
Experiments demonstrate that our method outperforms the state-of-the-art method by relatively 27% for the moderate level and 30% for the hard level in the test set of KITTI benchmark.
arXiv Detail & Related papers (2021-04-06T07:01:28Z) - 3D Object Classification on Partial Point Clouds: A Practical
Perspective [91.81377258830703]
A point cloud is a popular shape representation adopted in 3D object classification.
This paper introduces a practical setting to classify partial point clouds of object instances under any poses.
A novel algorithm in an alignment-classification manner is proposed in this paper.
arXiv Detail & Related papers (2020-12-18T04:00:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.