Efficient Knowledge Compilation Beyond Weighted Model Counting
- URL: http://arxiv.org/abs/2205.07496v1
- Date: Mon, 16 May 2022 08:10:40 GMT
- Title: Efficient Knowledge Compilation Beyond Weighted Model Counting
- Authors: Rafael Kiesel, Pietro Totis and Angelika Kimmig
- Abstract summary: We introduce Second Level Algebraic Model Counting (2AMC) as a generic framework for these kinds of problems.
First level techniques based on Knowledge Compilation (KC) have been adapted for specific 2AMC instances by imposing variable order constraints.
We show that we can exploit the logical structure of a 2AMC problem to omit parts of these constraints, thus limiting the negative effect.
- Score: 7.828647825246474
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantitative extensions of logic programming often require the solution of so
called second level inference tasks, i.e., problems that involve a third
operation, such as maximization or normalization, on top of addition and
multiplication, and thus go beyond the well-known weighted or algebraic model
counting setting of probabilistic logic programming under the distribution
semantics. We introduce Second Level Algebraic Model Counting (2AMC) as a
generic framework for these kinds of problems. As 2AMC is to (algebraic) model
counting what forall-exists-SAT is to propositional satisfiability, it is
notoriously hard to solve. First level techniques based on Knowledge
Compilation (KC) have been adapted for specific 2AMC instances by imposing
variable order constraints on the resulting circuit. However, those constraints
can severely increase the circuit size and thus decrease the efficiency of such
approaches. We show that we can exploit the logical structure of a 2AMC problem
to omit parts of these constraints, thus limiting the negative effect.
Furthermore, we introduce and implement a strategy to generate a sufficient set
of constraints statically, with a priori guarantees for the performance of KC.
Our empirical evaluation on several benchmarks and tasks confirms that our
theoretical results can translate into more efficient solving in practice.
Under consideration for acceptance in TPLP.
Related papers
- Unlocking the Capabilities of Thought: A Reasoning Boundary Framework to Quantify and Optimize Chain-of-Thought [61.588465852846646]
Chain-of-Thought (CoT) reasoning has emerged as a promising approach for enhancing the performance of large language models (LLMs)
In this work, we introduce a novel reasoning boundary framework (RBF) to address these challenges.
arXiv Detail & Related papers (2024-10-08T05:26:28Z) - Efficient Alternating Minimization Solvers for Wyner Multi-View
Unsupervised Learning [0.0]
We propose two novel formulations that enable the development of computational efficient solvers based the alternating principle.
The proposed solvers offer computational efficiency, theoretical convergence guarantees, local minima complexity with the number of views, and exceptional accuracy as compared with the state-of-the-art techniques.
arXiv Detail & Related papers (2023-03-28T10:17:51Z) - Confident Adaptive Language Modeling [95.45272377648773]
CALM is a framework for dynamically allocating different amounts of compute per input and generation timestep.
We demonstrate the efficacy of our framework in reducing compute -- potential speedup of up to $times 3$ -- while provably maintaining high performance.
arXiv Detail & Related papers (2022-07-14T17:00:19Z) - Exploring Viable Algorithmic Options for Learning from Demonstration
(LfD): A Parameterized Complexity Approach [0.0]
In this paper, we show how such a systematic exploration of algorithmic options can be done using parameterized complexity analysis.
We show that none of our problems can be solved efficiently either in general or relative to a number of (often simultaneous) restrictions on environments, demonstrations, and policies.
arXiv Detail & Related papers (2022-05-10T15:54:06Z) - Lifting Symmetry Breaking Constraints with Inductive Logic Programming [2.036811219647753]
We introduce a new model-oriented approach for Answer Set Programming that lifts the Symmetry Breaking Constraints into a set of interpretable first-order constraints.
Experiments demonstrate the ability of our framework to learn general constraints from instance-specific SBCs.
arXiv Detail & Related papers (2021-12-22T11:27:48Z) - High Dimensional Level Set Estimation with Bayesian Neural Network [58.684954492439424]
This paper proposes novel methods to solve the high dimensional Level Set Estimation problems using Bayesian Neural Networks.
For each problem, we derive the corresponding theoretic information based acquisition function to sample the data points.
Numerical experiments on both synthetic and real-world datasets show that our proposed method can achieve better results compared to existing state-of-the-art approaches.
arXiv Detail & Related papers (2020-12-17T23:21:53Z) - Robust Finite-State Controllers for Uncertain POMDPs [25.377873201375515]
Uncertain partially observable decision processes (uPOMDPs) allow the probabilistic transition observation functions of standard POMDPs to belong to an uncertainty set.
We develop an algorithm to compute finite-memory policies for uPOMDPs.
arXiv Detail & Related papers (2020-09-24T02:58:50Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - An Integer Linear Programming Framework for Mining Constraints from Data [81.60135973848125]
We present a general framework for mining constraints from data.
In particular, we consider the inference in structured output prediction as an integer linear programming (ILP) problem.
We show that our approach can learn to solve 9x9 Sudoku puzzles and minimal spanning tree problems from examples without providing the underlying rules.
arXiv Detail & Related papers (2020-06-18T20:09:53Z) - From Checking to Inference: Actual Causality Computations as
Optimization Problems [79.87179017975235]
We present a novel approach to formulate different notions of causal reasoning, over binary acyclic models, as optimization problems.
We show that both notions are efficiently automated. Using models with more than $8000$ variables, checking is computed in a matter of seconds, with MaxSAT outperforming ILP in many cases.
arXiv Detail & Related papers (2020-06-05T10:56:52Z) - Consistent Second-Order Conic Integer Programming for Learning Bayesian
Networks [2.7473982588529653]
We study the problem of learning the sparse DAG structure of a BN from continuous observational data.
The optimal solution to this mathematical program is known to have desirable statistical properties under certain conditions.
We propose a concrete early stopping criterion to terminate the branch-and-bound process in order to obtain a near-optimal solution.
arXiv Detail & Related papers (2020-05-29T00:13:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.