論文の概要: Exploring Diversity-based Active Learning for 3D Object Detection in Autonomous Driving
- arxiv url: http://arxiv.org/abs/2205.07708v3
- Date: Tue, 22 Oct 2024 13:34:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:25:13.453696
- Title: Exploring Diversity-based Active Learning for 3D Object Detection in Autonomous Driving
- Title(参考訳): 自律運転における3次元物体検出のための多様性に基づく能動学習の探索
- Authors: Jinpeng Lin, Zhihao Liang, Shengheng Deng, Lile Cai, Tao Jiang, Tianrui Li, Kui Jia, Xun Xu,
- Abstract要約: 多様性に基づくアクティブラーニング(AL)を,アノテーションの負担を軽減するための潜在的解決策として検討する。
選択したサンプルの空間的・時間的多様性を強制する新しい取得関数を提案する。
提案手法がnuScenesデータセットに与える影響を実証し,既存のAL戦略を著しく上回ることを示す。
- 参考スコア(独自算出の注目度): 45.405303803618
- License:
- Abstract: 3D object detection has recently received much attention due to its great potential in autonomous vehicle (AV). The success of deep learning based object detectors relies on the availability of large-scale annotated datasets, which is time-consuming and expensive to compile, especially for 3D bounding box annotation. In this work, we investigate diversity-based active learning (AL) as a potential solution to alleviate the annotation burden. Given limited annotation budget, only the most informative frames and objects are automatically selected for human to annotate. Technically, we take the advantage of the multimodal information provided in an AV dataset, and propose a novel acquisition function that enforces spatial and temporal diversity in the selected samples. We benchmark the proposed method against other AL strategies under realistic annotation cost measurement, where the realistic costs for annotating a frame and a 3D bounding box are both taken into consideration. We demonstrate the effectiveness of the proposed method on the nuScenes dataset and show that it outperforms existing AL strategies significantly. Code is available at https://github.com/Linkon87/Exploring-Diversity-based-Active-Learning-for-3D-Object-Detection-in-Aut onomous-Driving
- Abstract(参考訳): 3Dオブジェクト検出は、最近、自動運転車(AV)に大きな可能性を秘めているため、多くの注目を集めている。
ディープラーニングベースのオブジェクト検出器の成功は、特に3Dバウンディングボックスアノテーションにおいて、大規模なアノテーション付きデータセットが利用可能であることに依存している。
本研究では,多様性に基づくアクティブラーニング(AL)を,アノテーションの負担を軽減するための潜在的解決策として検討する。
アノテーションの予算が限られているため、人間が注釈を付けるための最も情報性の高いフレームとオブジェクトだけが自動的に選択される。
技術的には、AVデータセットに提供されるマルチモーダル情報の利点を生かし、選択したサンプルの空間的・時間的多様性を強制する新しい取得関数を提案する。
提案手法を現実的なアノテーションコスト測定に基づく他のAL戦略と比較し,フレームのアノテートと3次元バウンディングボックスの現実的なコストを考慮に入れた。
提案手法がnuScenesデータセットに与える影響を実証し,既存のAL戦略を著しく上回ることを示す。
コードはhttps://github.com/Linkon87/Exploring-diversity-based-Active-Learning-for-3D-Object-Detection-in-Aut onomous-Drivingで公開されている。
関連論文リスト
- STONE: A Submodular Optimization Framework for Active 3D Object Detection [20.54906045954377]
正確な3Dオブジェクト検出器をトレーニングするための鍵となる要件は、大量のLiDARベースのポイントクラウドデータが利用できることである。
本稿では,3次元物体検出装置のトレーニングにおけるラベル付けコストを大幅に削減する,統合されたアクティブな3次元物体検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-04T20:45:33Z) - Find n' Propagate: Open-Vocabulary 3D Object Detection in Urban Environments [67.83787474506073]
我々は,現在のLiDARに基づく3Dオブジェクト検出システムの限界に対処する。
本稿では,3次元OVタスクに対する汎用textscFind n' Propagate アプローチを提案する。
我々は、新しいオブジェクトクラスに対する平均精度(AP)を最大3.97倍に向上させる。
論文 参考訳(メタデータ) (2024-03-20T12:51:30Z) - View-to-Label: Multi-View Consistency for Self-Supervised 3D Object
Detection [46.077668660248534]
本稿では,RGBシーケンスのみから,自己監督型3Dオブジェクト検出を行う手法を提案する。
KITTI 3Dデータセットを用いた実験では,最先端の自己管理手法と同等の性能を示した。
論文 参考訳(メタデータ) (2023-05-29T09:30:39Z) - ReBound: An Open-Source 3D Bounding Box Annotation Tool for Active
Learning [3.1997195262707536]
ReBoundはオープンソースの3Dビジュアライゼーションとデータセットの再アノテーションツールである。
ReBoundは探索データ解析に有効であり,能動的学習を促進することができることを示す。
論文 参考訳(メタデータ) (2023-03-11T00:11:30Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
我々は,一般的な(ベース)オブジェクトに対して大量のトレーニングデータを持つが,レア(ノーベル)クラスに対してはごく少数のデータしか持たない,一般化された数発の3Dオブジェクト検出という新しいタスクを提案する。
具体的には、画像と点雲の奥行きの違いを分析し、3D LiDARデータセットにおける少数ショット設定の実践的原理を示す。
この課題を解決するために,既存の3次元検出モデルを拡張し,一般的なオブジェクトと稀なオブジェクトの両方を認識するためのインクリメンタルな微調整手法を提案する。
論文 参考訳(メタデータ) (2023-02-08T07:11:36Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
本稿では,3次元オブジェクト検出(CMR3D)フレームワークのためのコンテキスト型マルチステージリファインメントを提案する。
我々のフレームワークは3Dシーンを入力として取り、シーンの有用なコンテキスト情報を明示的に統合しようと試みている。
3Dオブジェクトの検出に加えて,3Dオブジェクトカウント問題に対するフレームワークの有効性について検討する。
論文 参考訳(メタデータ) (2022-09-13T05:26:09Z) - Semi-supervised 3D Object Detection via Adaptive Pseudo-Labeling [18.209409027211404]
3次元物体検出はコンピュータビジョンにおいて重要な課題である。
既存のほとんどのメソッドでは、多くの高品質な3Dアノテーションが必要です。
本研究では,屋外3次元物体検出タスクのための擬似ラベルに基づく新しい半教師付きフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-15T02:58:43Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
3D MOT問題に対する統一型学習型アプローチを提案します。
我々は、完全にトレーニング可能なデータアソシエーションにNeural Message Passing Networkを使用します。
AMOTAの65.6%の最先端性能と58%のIDスウィッチを達成して、公開可能なnuScenesデータセットに対する提案手法のメリットを示す。
論文 参考訳(メタデータ) (2021-04-23T17:59:28Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
具体的には、ラベルのない新しい未知のデータに基づくネットワークの一般化を促進するための、徹底的な摂動スキームを設計する。
我々のSESSは、50%のラベル付きデータを用いて、最先端の完全教師付き手法と比較して、競争性能を達成している。
論文 参考訳(メタデータ) (2019-12-26T08:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。