Gradient-based Counterfactual Explanations using Tractable Probabilistic
Models
- URL: http://arxiv.org/abs/2205.07774v1
- Date: Mon, 16 May 2022 16:05:43 GMT
- Title: Gradient-based Counterfactual Explanations using Tractable Probabilistic
Models
- Authors: Xiaoting Shao, Kristian Kersting
- Abstract summary: Counterfactual examples are an appealing class of explanations for machine learning models.
Current approaches primarily solve this task by a complex optimization.
We propose a novel approach to deal with these problems using only two gradient computations.
- Score: 20.770168600755877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Counterfactual examples are an appealing class of post-hoc explanations for
machine learning models. Given input $x$ of class $y_1$, its counterfactual is
a contrastive example $x^\prime$ of another class $y_0$. Current approaches
primarily solve this task by a complex optimization: define an objective
function based on the loss of the counterfactual outcome $y_0$ with hard or
soft constraints, then optimize this function as a black-box. This "deep
learning" approach, however, is rather slow, sometimes tricky, and may result
in unrealistic counterfactual examples. In this work, we propose a novel
approach to deal with these problems using only two gradient computations based
on tractable probabilistic models. First, we compute an unconstrained
counterfactual $u$ of $x$ to induce the counterfactual outcome $y_0$. Then, we
adapt $u$ to higher density regions, resulting in $x^{\prime}$. Empirical
evidence demonstrates the dominant advantages of our approach.
Related papers
- Learning to Solve the Constrained Most Probable Explanation Task in Probabilistic Graphical Models [10.603378323312809]
We train a deep neural network that learns to output near-optimal solutions to the constrained most-probable explanation (CMPE) problem.
We analyze the properties of our proposed method and experimentally demonstrate its efficacy on several benchmark problems.
arXiv Detail & Related papers (2024-04-17T17:55:17Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
Many real-world problems have complicated non functional constraints and use a large number of data points.
Our proposed method outperforms an existing method with the previously best-known result.
arXiv Detail & Related papers (2022-12-19T14:48:54Z) - Sharper Rates and Flexible Framework for Nonconvex SGD with Client and
Data Sampling [64.31011847952006]
We revisit the problem of finding an approximately stationary point of the average of $n$ smooth and possibly non-color functions.
We generalize the $smallsfcolorgreen$ so that it can provably work with virtually any sampling mechanism.
We provide the most general and most accurate analysis of optimal bound in the smooth non-color regime.
arXiv Detail & Related papers (2022-06-05T21:32:33Z) - Optimal Gradient Sliding and its Application to Distributed Optimization
Under Similarity [121.83085611327654]
We structured convex optimization problems with additive objective $r:=p + q$, where $r$ is $mu$-strong convex similarity.
We proposed a method to solve problems master to agents' communication and local calls.
The proposed method is much sharper than the $mathcalO(sqrtL_q/mu)$ method.
arXiv Detail & Related papers (2022-05-30T14:28:02Z) - Mixability made efficient: Fast online multiclass logistic regression [68.8204255655161]
We show that mixability can be a powerful tool to obtain algorithms with optimal regret.
The resulting methods often suffer from high computational complexity which has reduced their practical applicability.
arXiv Detail & Related papers (2021-10-08T08:22:05Z) - Randomized Exploration for Reinforcement Learning with General Value
Function Approximation [122.70803181751135]
We propose a model-free reinforcement learning algorithm inspired by the popular randomized least squares value iteration (RLSVI) algorithm.
Our algorithm drives exploration by simply perturbing the training data with judiciously chosen i.i.d. scalar noises.
We complement the theory with an empirical evaluation across known difficult exploration tasks.
arXiv Detail & Related papers (2021-06-15T02:23:07Z) - Saddle Point Optimization with Approximate Minimization Oracle [8.680676599607125]
A major approach to saddle point optimization $min_xmax_y f(x, y)$ is a gradient based approach as is popularized by generative adversarial networks (GANs)
In contrast, we analyze an alternative approach relying only on an oracle that solves a minimization problem approximately.
Our approach locates approximate solutions $x'$ and $y'$ to $min_x'f(x', y)$ at a given point $(x, y)$ and updates $(x, y)$ toward these approximate solutions $(x', y'
arXiv Detail & Related papers (2021-03-29T23:03:24Z) - Learning to extrapolate using continued fractions: Predicting the
critical temperature of superconductor materials [5.905364646955811]
In the field of Artificial Intelligence (AI) and Machine Learning (ML), the approximation of unknown target functions $y=f(mathbfx)$ is a common objective.
We refer to $S$ as the training set and aim to identify a low-complexity mathematical model that can effectively approximate this target function for new instances $mathbfx$.
arXiv Detail & Related papers (2020-11-27T04:57:40Z) - A One-bit, Comparison-Based Gradient Estimator [29.600975900977343]
We show how one can use tools from one-bit compressed sensing to construct a robust and reliable estimator of the normalized gradient.
We propose an algorithm, coined SCOBO, that uses this estimator within a gradient descent scheme.
arXiv Detail & Related papers (2020-10-06T05:01:38Z) - Improving Robustness and Generality of NLP Models Using Disentangled
Representations [62.08794500431367]
Supervised neural networks first map an input $x$ to a single representation $z$, and then map $z$ to the output label $y$.
We present methods to improve robustness and generality of NLP models from the standpoint of disentangled representation learning.
We show that models trained with the proposed criteria provide better robustness and domain adaptation ability in a wide range of supervised learning tasks.
arXiv Detail & Related papers (2020-09-21T02:48:46Z) - Sample Efficient Reinforcement Learning via Low-Rank Matrix Estimation [30.137884459159107]
We consider the question of learning $Q$-function in a sample efficient manner for reinforcement learning with continuous state and action spaces.
We develop a simple, iterative learning algorithm that finds $epsilon$-Schmidt $Q$-function with sample complexity of $widetildeO(frac1epsilonmax(d1), d_2)+2)$ when the optimal $Q$-function has low rank $r$ and the factor $$ is below a certain threshold.
arXiv Detail & Related papers (2020-06-11T00:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.