Optimal Gradient Sliding and its Application to Distributed Optimization
Under Similarity
- URL: http://arxiv.org/abs/2205.15136v1
- Date: Mon, 30 May 2022 14:28:02 GMT
- Title: Optimal Gradient Sliding and its Application to Distributed Optimization
Under Similarity
- Authors: Dmitry Kovalev, Aleksandr Beznosikov, Ekaterina Borodich, Alexander
Gasnikov, Gesualdo Scutari
- Abstract summary: We structured convex optimization problems with additive objective $r:=p + q$, where $r$ is $mu$-strong convex similarity.
We proposed a method to solve problems master to agents' communication and local calls.
The proposed method is much sharper than the $mathcalO(sqrtL_q/mu)$ method.
- Score: 121.83085611327654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study structured convex optimization problems, with additive objective
$r:=p + q$, where $r$ is ($\mu$-strongly) convex, $q$ is $L_q$-smooth and
convex, and $p$ is $L_p$-smooth, possibly nonconvex. For such a class of
problems, we proposed an inexact accelerated gradient sliding method that can
skip the gradient computation for one of these components while still achieving
optimal complexity of gradient calls of $p$ and $q$, that is,
$\mathcal{O}(\sqrt{L_p/\mu})$ and $\mathcal{O}(\sqrt{L_q/\mu})$,
respectively. This result is much sharper than the classic black-box complexity
$\mathcal{O}(\sqrt{(L_p+L_q)/\mu})$, especially when the difference between
$L_q$ and $L_q$ is large. We then apply the proposed method to solve
distributed optimization problems over master-worker architectures, under
agents' function similarity, due to statistical data similarity or otherwise.
The distributed algorithm achieves for the first time lower complexity bounds
on {\it both} communication and local gradient calls, with the former having
being a long-standing open problem. Finally the method is extended to
distributed saddle-problems (under function similarity) by means of solving a
class of variational inequalities, achieving lower communication and
computation complexity bounds.
Related papers
- An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Beyond Uniform Smoothness: A Stopped Analysis of Adaptive SGD [38.221784575853796]
This work considers the problem of finding first-order stationary point of a non atau function with potentially constant smoothness using a gradient.
We develop a technique that allows us to prove $mathcalO(fracmathrmpolylog(T)sigmatT)$ convergence rates without assuming uniform bounds on the noise.
arXiv Detail & Related papers (2023-02-13T18:13:36Z) - ReSQueing Parallel and Private Stochastic Convex Optimization [59.53297063174519]
We introduce a new tool for BFG convex optimization (SCO): a Reweighted Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density.
We develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings.
arXiv Detail & Related papers (2023-01-01T18:51:29Z) - Decomposable Non-Smooth Convex Optimization with Nearly-Linear Gradient
Oracle Complexity [15.18055488087588]
We give an algorithm that minimizes the above convex formulation to $epsilon$-accuracy in $widetildeO(sum_i=1n d_i log (1 /epsilon))$ gradient computations.
Our main technical contribution is an adaptive procedure to select an $f_i$ term at every iteration via a novel combination of cutting-plane and interior-point methods.
arXiv Detail & Related papers (2022-08-07T20:53:42Z) - Decentralized Stochastic Variance Reduced Extragradient Method [25.21457349137344]
This paper studies decentralized convex-concave minimax optimization problems of the form $min_xmax_y fx,y triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msum
arXiv Detail & Related papers (2022-02-01T16:06:20Z) - Lifted Primal-Dual Method for Bilinearly Coupled Smooth Minimax
Optimization [47.27237492375659]
We study the bilinearly coupled minimax problem: $min_x max_y f(x) + ytop A x - h(y)$, where $f$ and $h$ are both strongly convex smooth functions.
No known first-order algorithms have hitherto achieved the lower complexity bound of $Omega(sqrtfracL_xmu_x + frac|A|sqrtmu_x,mu_y) log(frac1vareps
arXiv Detail & Related papers (2022-01-19T05:56:19Z) - Hybrid Stochastic-Deterministic Minibatch Proximal Gradient:
Less-Than-Single-Pass Optimization with Nearly Optimal Generalization [83.80460802169999]
We show that HSDMPG can attain an $mathcalObig (1/sttnbig)$ which is at the order of excess error on a learning model.
For loss factors, we prove that HSDMPG can attain an $mathcalObig (1/sttnbig)$ which is at the order of excess error on a learning model.
arXiv Detail & Related papers (2020-09-18T02:18:44Z) - Maximizing Determinants under Matroid Constraints [69.25768526213689]
We study the problem of finding a basis $S$ of $M$ such that $det(sum_i in Sv_i v_i v_itop)$ is maximized.
This problem appears in a diverse set of areas such as experimental design, fair allocation of goods, network design, and machine learning.
arXiv Detail & Related papers (2020-04-16T19:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.