論文の概要: Simple Contrastive Graph Clustering
- arxiv url: http://arxiv.org/abs/2205.07865v1
- Date: Wed, 11 May 2022 06:45:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-22 10:57:26.798324
- Title: Simple Contrastive Graph Clustering
- Title(参考訳): 単純なコントラストグラフクラスタリング
- Authors: Yue Liu, Xihong Yang, Sihang Zhou, Xinwang Liu
- Abstract要約: 既存の手法を改善するための単純なコントラストグラフクラスタリング(SCGC)アルゴリズムを提案する。
我々のアルゴリズムは、最近のコントラストの高いディープクラスタリング競合よりも、平均して7倍のスピードアップを達成している。
- 参考スコア(独自算出の注目度): 41.396185271303956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive learning has recently attracted plenty of attention in deep graph
clustering for its promising performance. However, complicated data
augmentations and time-consuming graph convolutional operation undermine the
efficiency of these methods. To solve this problem, we propose a Simple
Contrastive Graph Clustering (SCGC) algorithm to improve the existing methods
from the perspectives of network architecture, data augmentation, and objective
function. As to the architecture, our network includes two main parts, i.e.,
pre-processing and network backbone. A simple low-pass denoising operation
conducts neighbor information aggregation as an independent pre-processing, and
only two multilayer perceptrons (MLPs) are included as the backbone. For data
augmentation, instead of introducing complex operations over graphs, we
construct two augmented views of the same vertex by designing parameter
un-shared siamese encoders and corrupting the node embeddings directly.
Finally, as to the objective function, to further improve the clustering
performance, a novel cross-view structural consistency objective function is
designed to enhance the discriminative capability of the learned network.
Extensive experimental results on seven benchmark datasets validate our
proposed algorithm's effectiveness and superiority. Significantly, our
algorithm outperforms the recent contrastive deep clustering competitors with
at least seven times speedup on average.
- Abstract(参考訳): コントラスト学習は最近、その有望なパフォーマンスでディープグラフクラスタリングに多くの注目を集めている。
しかし、複雑なデータ拡張と時間を要するグラフ畳み込み操作は、これらの方法の効率を損なう。
この問題を解決するために,ネットワークアーキテクチャ,データ拡張,目的関数の観点から既存の手法を改善するための単純なコントラストグラフクラスタリング(SCGC)アルゴリズムを提案する。
アーキテクチャに関しては,ネットワークには前処理とネットワークバックボーンという2つの主要な部分がある。
単純なローパス復調操作は、独立処理として隣接情報集約を行い、バックボーンには2つの多層パーセプトロン(MLP)のみを含む。
データ拡張のために、グラフに複雑な操作を導入する代わりに、パラメータの共有されていないシアムエンコーダを設計し、ノード埋め込みを直接破壊することで、同じ頂点の2つの拡張ビューを構築する。
最後に、目的関数について、さらにクラスタリング性能を向上させるために、学習ネットワークの識別能力を高めるために、新たなクロスビュー構造一貫性目的関数を設計する。
7つのベンチマークデータセットの大規模な実験結果から,提案アルゴリズムの有効性と優位性を検証した。
重要な点として、我々のアルゴリズムは、最近のコントラストの高いディープクラスタリング競合よりも、平均して7倍のスピードアップを達成している。
関連論文リスト
- Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
グラフ学習モデルは、協調フィルタリング(CF)ベースのレコメンデーションシステムに広くデプロイされている。
データ疎度の問題により、元の入力のグラフ構造は潜在的な肯定的な嗜好エッジを欠いている。
AGL-SC(Amplify Graph Learning framework)を提案する。
論文 参考訳(メタデータ) (2024-06-27T08:26:20Z) - Cluster-based Graph Collaborative Filtering [55.929052969825825]
グラフ畳み込みネットワーク(GCN)は、レコメンデーションシステムのためのユーザおよびアイテム表現の学習に成功している。
既存のGCNベースのほとんどのメソッドは、高階グラフ畳み込みを実行しながら、ユーザの複数の関心事を見落としている。
クラスタベースグラフ協調フィルタリング(ClusterGCF)と呼ばれる新しいGCNベースのレコメンデーションモデルを提案する。
論文 参考訳(メタデータ) (2024-04-16T07:05:16Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Deep Graph Clustering via Dual Correlation Reduction [37.973072977988494]
本稿では,Dual correlation Reduction Network (DCRN) と呼ばれる自己教師型ディープグラフクラスタリング手法を提案する。
提案手法では,まず,サンプルを符号化するシアムネットワークを設計する。次に,クロスビューサンプル相関行列とクロスビュー特徴相関行列をそれぞれ2つのアイデンティティ行列に近似させることで,二重レベルの情報相関を小さくする。
本稿では,GCNの過度なスムース化による表現の崩壊を軽減するために,ネットワークが長距離情報を得るための伝搬正則化項を導入する。
論文 参考訳(メタデータ) (2021-12-29T04:05:38Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
マルチビュークラスタリングのための効率的かつ効率的なグラフ学習モデルを提案する。
本手法はテンソルシャッテンp-ノルムの最小化により異なるビューのグラフ間のビュー類似性を利用する。
提案アルゴリズムは時間経済であり,安定した結果を得るとともに,データサイズによく対応している。
論文 参考訳(メタデータ) (2021-08-15T13:14:28Z) - Graph Contrastive Learning with Adaptive Augmentation [23.37786673825192]
本稿では,適応的拡張を用いた新しいグラフコントラスト表現学習法を提案する。
具体的には,ノードの集中度に基づく拡張スキームを設計し,重要な結合構造を明らかにする。
提案手法は,既存の最先端のベースラインを一貫して上回り,教師付きベースラインを超えている。
論文 参考訳(メタデータ) (2020-10-27T15:12:21Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
重複する部分グラフを多数必要とせず,完全に学習可能なクラスタリングフレームワークを提案する。
提案手法はクラスタリングの精度を大幅に向上させ,その上で訓練した認識モデルの性能を向上させるが,既存の教師付き手法に比べて桁違いに効率的である。
論文 参考訳(メタデータ) (2020-04-01T13:39:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。