Data-Driven Interpolation for Super-Scarce X-Ray Computed Tomography
- URL: http://arxiv.org/abs/2205.07888v1
- Date: Mon, 16 May 2022 15:42:41 GMT
- Title: Data-Driven Interpolation for Super-Scarce X-Ray Computed Tomography
- Authors: Emilien Valat, Katayoun Farrahi, Thomas Blumensath
- Abstract summary: We train shallow neural networks to combine two neighbouring acquisitions into an estimated measurement at an intermediate angle.
This yields an enhanced sequence of measurements that can be reconstructed using standard methods.
Results are obtained for 2D and 3D imaging, on large biomedical datasets.
- Score: 1.3535770763481902
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the problem of reconstructing X-Ray tomographic images from scarce
measurements by interpolating missing acquisitions using a self-supervised
approach. To do so, we train shallow neural networks to combine two
neighbouring acquisitions into an estimated measurement at an intermediate
angle. This procedure yields an enhanced sequence of measurements that can be
reconstructed using standard methods, or further enhanced using regularisation
approaches.
Unlike methods that improve the sequence of acquisitions using an initial
deterministic interpolation followed by machine-learning enhancement, we focus
on inferring one measurement at once. This allows the method to scale to 3D,
the computation to be faster and crucially, the interpolation to be
significantly better than the current methods, when they exist. We also
establish that a sequence of measurements must be processed as such, rather
than as an image or a volume. We do so by comparing interpolation and
up-sampling methods, and find that the latter significantly under-perform.
We compare the performance of the proposed method against deterministic
interpolation and up-sampling procedures and find that it outperforms them,
even when used jointly with a state-of-the-art projection-data enhancement
approach using machine-learning. These results are obtained for 2D and 3D
imaging, on large biomedical datasets, in both projection space and image
space.
Related papers
- 3D Equivariant Pose Regression via Direct Wigner-D Harmonics Prediction [50.07071392673984]
Existing methods learn 3D rotations parametrized in the spatial domain using angles or quaternions.
We propose a frequency-domain approach that directly predicts Wigner-D coefficients for 3D rotation regression.
Our method achieves state-of-the-art results on benchmarks such as ModelNet10-SO(3) and PASCAL3D+.
arXiv Detail & Related papers (2024-11-01T12:50:38Z) - Mismatched: Evaluating the Limits of Image Matching Approaches and Benchmarks [9.388897214344572]
Three-dimensional (3D) reconstruction from two-dimensional images is an active research field in computer vision.
Traditionally, parametric techniques have been employed for this task.
Recent advancements have seen a shift towards learning-based methods.
arXiv Detail & Related papers (2024-08-29T11:16:34Z) - Plug-and-Play Regularization on Magnitude with Deep Priors for 3D Near-Field MIMO Imaging [0.0]
Near-field radar imaging systems are used in a wide range of applications such as concealed weapon detection and medical diagnosis.
We consider the problem of the three-dimensional (3D) complex-valued reflectivity by enforcing regularization on its magnitude.
arXiv Detail & Related papers (2023-12-26T12:25:09Z) - Two Approaches to Supervised Image Segmentation [55.616364225463066]
The present work develops comparison experiments between deep learning and multiset neurons approaches.
The deep learning approach confirmed its potential for performing image segmentation.
The alternative multiset methodology allowed for enhanced accuracy while requiring little computational resources.
arXiv Detail & Related papers (2023-07-19T16:42:52Z) - MOSAIC: Masked Optimisation with Selective Attention for Image
Reconstruction [0.5541644538483947]
We propose a novel compressive sensing framework to reconstruct images given any random selection of measurements.
MOSAIC incorporates an embedding technique to efficiently apply attention mechanisms on an encoded sequence of measurements.
A range of experiments validate our proposed architecture as a promising alternative for existing CS reconstruction methods.
arXiv Detail & Related papers (2023-06-01T17:05:02Z) - Self-Supervised Depth Estimation in Laparoscopic Image using 3D
Geometric Consistency [7.902636435901286]
We present M3Depth, a self-supervised depth estimator to leverage 3D geometric structural information hidden in stereo pairs.
Our method outperforms previous self-supervised approaches on both a public dataset and a newly acquired dataset by a large margin.
arXiv Detail & Related papers (2022-08-17T17:03:48Z) - RiCS: A 2D Self-Occlusion Map for Harmonizing Volumetric Objects [68.85305626324694]
Ray-marching in Camera Space (RiCS) is a new method to represent the self-occlusions of foreground objects in 3D into a 2D self-occlusion map.
We show that our representation map not only allows us to enhance the image quality but also to model temporally coherent complex shadow effects.
arXiv Detail & Related papers (2022-05-14T05:35:35Z) - Autoencoding Low-Resolution MRI for Semantically Smooth Interpolation of
Anisotropic MRI [1.281734910003263]
We propose an unsupervised deep learning semantic approach that synthesizes new intermediate slices from encoded low-resolution examples.
The method produces significantly better results in terms of Structural Similarity Index Measure and Peak Signal-to-Noise Ratio than a cubic B-spline approach.
arXiv Detail & Related papers (2022-02-18T15:40:00Z) - Leveraging Spatial and Photometric Context for Calibrated Non-Lambertian
Photometric Stereo [61.6260594326246]
We introduce an efficient fully-convolutional architecture that can leverage both spatial and photometric context simultaneously.
Using separable 4D convolutions and 2D heat-maps reduces the size and makes more efficient.
arXiv Detail & Related papers (2021-03-22T18:06:58Z) - Displacement-Invariant Cost Computation for Efficient Stereo Matching [122.94051630000934]
Deep learning methods have dominated stereo matching leaderboards by yielding unprecedented disparity accuracy.
But their inference time is typically slow, on the order of seconds for a pair of 540p images.
We propose a emphdisplacement-invariant cost module to compute the matching costs without needing a 4D feature volume.
arXiv Detail & Related papers (2020-12-01T23:58:16Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
We propose a two-stage framework, with the first stage to quickly localize the prostate region and the second stage to precisely segment the prostate.
We introduce a novel online metric learning module through voxel-wise sampling in the multi-task network.
Our method can effectively learn more representative voxel-level features compared with the conventional learning methods with cross-entropy or Dice loss.
arXiv Detail & Related papers (2020-05-15T10:37:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.