Plug-and-Play Regularization on Magnitude with Deep Priors for 3D Near-Field MIMO Imaging
- URL: http://arxiv.org/abs/2312.16024v2
- Date: Wed, 13 Mar 2024 22:27:03 GMT
- Title: Plug-and-Play Regularization on Magnitude with Deep Priors for 3D Near-Field MIMO Imaging
- Authors: Okyanus Oral, Figen S. Oktem,
- Abstract summary: Near-field radar imaging systems are used in a wide range of applications such as concealed weapon detection and medical diagnosis.
We consider the problem of the three-dimensional (3D) complex-valued reflectivity by enforcing regularization on its magnitude.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Near-field radar imaging systems are used in a wide range of applications such as concealed weapon detection and medical diagnosis. In this paper, we consider the problem of reconstructing the three-dimensional (3D) complex-valued reflectivity distribution of the near-field scene by enforcing regularization on its magnitude. We solve this inverse problem by using the alternating direction method of multipliers (ADMM) framework. For this, we provide a general expression for the proximal mapping associated with such regularization functionals. This equivalently corresponds to the solution of a complex-valued denoising problem which involves regularization on the magnitude. By utilizing this expression, we develop a novel and efficient plug-and-play (PnP) reconstruction method that consists of simple update steps. Due to the success of data-adaptive deep priors in imaging, we also train a 3D deep denoiser to exploit within the developed PnP framework. The effectiveness of the developed approach is demonstrated for multiple-input multiple-output (MIMO) imaging under various compressive and noisy observation scenarios using both simulated and experimental data. The performance is also compared with the commonly used direct inversion and sparsity-based reconstruction approaches. The results demonstrate that the developed technique not only provides state-of-the-art performance for 3D real-world targets, but also enables fast computation. Our approach provides a unified general framework to effectively handle arbitrary regularization on the magnitude of a complex-valued unknown and is equally applicable to other radar image formation problems (including SAR).
Related papers
- 3D Equivariant Pose Regression via Direct Wigner-D Harmonics Prediction [50.07071392673984]
Existing methods learn 3D rotations parametrized in the spatial domain using angles or quaternions.
We propose a frequency-domain approach that directly predicts Wigner-D coefficients for 3D rotation regression.
Our method achieves state-of-the-art results on benchmarks such as ModelNet10-SO(3) and PASCAL3D+.
arXiv Detail & Related papers (2024-11-01T12:50:38Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - R3D-AD: Reconstruction via Diffusion for 3D Anomaly Detection [12.207437451118036]
3D anomaly detection plays a crucial role in monitoring parts for localized inherent defects in precision manufacturing.
Embedding-based and reconstruction-based approaches are among the most popular and successful methods.
We propose R3D-AD, reconstructing anomalous point clouds by diffusion model for precise 3D anomaly detection.
arXiv Detail & Related papers (2024-07-15T16:10:58Z) - DDGS-CT: Direction-Disentangled Gaussian Splatting for Realistic Volume Rendering [30.30749508345767]
Digitally reconstructed radiographs (DRRs) are simulated 2D X-ray images generated from 3D CT volumes.
We present a novel approach that marries realistic physics-inspired X-ray simulation with efficient, differentiable DRR generation.
arXiv Detail & Related papers (2024-06-04T17:39:31Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
We show for the first time that using 3D Gaussians for map representation with unposed camera images and inertial measurements can enable accurate SLAM.
Our method, MM3DGS, addresses the limitations of prior rendering by enabling faster scale awareness, and improved trajectory tracking.
We also release a multi-modal dataset, UT-MM, collected from a mobile robot equipped with a camera and an inertial measurement unit.
arXiv Detail & Related papers (2024-04-01T04:57:41Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Generalization of pixel-wise phase estimation by CNN and improvement of
phase-unwrapping by MRF optimization for one-shot 3D scan [0.621405559652172]
Active stereo technique using single pattern projection, a.k.a. one-shot 3D scan, have drawn a wide attention from industry, medical purposes, etc.
One severe drawback of one-shot 3D scan is sparse reconstruction.
We propose a pixel-wise technique for one-shot scan, which is applicable to any types of static pattern if the pattern is regular and periodic.
arXiv Detail & Related papers (2023-09-26T10:45:04Z) - Unfolding Framework with Prior of Convolution-Transformer Mixture and
Uncertainty Estimation for Video Snapshot Compressive Imaging [7.601695814245209]
We consider the problem of video snapshot compressive imaging (SCI), where sequential high-speed frames are modulated by different masks and captured by a single measurement.
By combining optimization algorithms and neural networks, deep unfolding networks (DUNs) score tremendous achievements in solving inverse problems.
arXiv Detail & Related papers (2023-06-20T06:25:48Z) - Orthogonal Matrix Retrieval with Spatial Consensus for 3D Unknown-View
Tomography [58.60249163402822]
Unknown-view tomography (UVT) reconstructs a 3D density map from its 2D projections at unknown, random orientations.
The proposed OMR is more robust and performs significantly better than the previous state-of-the-art OMR approach.
arXiv Detail & Related papers (2022-07-06T21:40:59Z) - Data-Driven Interpolation for Super-Scarce X-Ray Computed Tomography [1.3535770763481902]
We train shallow neural networks to combine two neighbouring acquisitions into an estimated measurement at an intermediate angle.
This yields an enhanced sequence of measurements that can be reconstructed using standard methods.
Results are obtained for 2D and 3D imaging, on large biomedical datasets.
arXiv Detail & Related papers (2022-05-16T15:42:41Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.