Deep Apprenticeship Learning for Playing Games
- URL: http://arxiv.org/abs/2205.07959v1
- Date: Mon, 16 May 2022 19:52:45 GMT
- Title: Deep Apprenticeship Learning for Playing Games
- Authors: Dejan Markovikj
- Abstract summary: We explore the feasibility of designing a learning model based on expert behaviour for complex, multidimensional tasks.
We propose a novel method for apprenticeship learning based on the previous research on supervised learning techniques in reinforcement learning.
Our method is applied to video frames from Atari games in order to teach an artificial agent to play those games.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the last decade, deep learning has achieved great success in machine
learning tasks where the input data is represented with different levels of
abstractions. Driven by the recent research in reinforcement learning using
deep neural networks, we explore the feasibility of designing a learning model
based on expert behaviour for complex, multidimensional tasks where reward
function is not available. We propose a novel method for apprenticeship
learning based on the previous research on supervised learning techniques in
reinforcement learning. Our method is applied to video frames from Atari games
in order to teach an artificial agent to play those games. Even though the
reported results are not comparable with the state-of-the-art results in
reinforcement learning, we demonstrate that such an approach has the potential
to achieve strong performance in the future and is worthwhile for further
research.
Related papers
- RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Diagnosing and exploiting the computational demands of videos games for
deep reinforcement learning [13.98405611352641]
We introduce the Learning Challenge Diagnosticator (LCD), a tool that measures the perceptual and reinforcement learning demands of a task.
We use LCD to discover a novel taxonomy of challenges in the Procgen benchmark, and demonstrate that these predictions are both highly reliable and can instruct algorithmic development.
arXiv Detail & Related papers (2023-09-22T21:03:33Z) - Learning and Retrieval from Prior Data for Skill-based Imitation
Learning [47.59794569496233]
We develop a skill-based imitation learning framework that extracts temporally extended sensorimotor skills from prior data.
We identify several key design choices that significantly improve performance on novel tasks.
arXiv Detail & Related papers (2022-10-20T17:34:59Z) - Maximum Entropy Model-based Reinforcement Learning [0.0]
This work connects exploration techniques and model-based reinforcement learning.
We have designed a novel exploration method that takes into account features of the model-based approach.
We also demonstrate through experiments that our method significantly improves the performance of the model-based algorithm Dreamer.
arXiv Detail & Related papers (2021-12-02T13:07:29Z) - Active Hierarchical Imitation and Reinforcement Learning [0.0]
In this project, we explored different imitation learning algorithms and designed active learning algorithms upon the hierarchical imitation and reinforcement learning framework we have developed.
Our experimental results showed that using DAgger and reward-based active learning method can achieve better performance while saving more human efforts physically and mentally during the training process.
arXiv Detail & Related papers (2020-12-14T08:27:27Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z) - D2RL: Deep Dense Architectures in Reinforcement Learning [47.67475810050311]
We take inspiration from successful architectural choices in computer vision and generative modelling.
We investigate the use of deeper networks and dense connections for reinforcement learning on a variety of simulated robotic learning benchmark environments.
arXiv Detail & Related papers (2020-10-19T01:27:07Z) - Transfer Learning in Deep Reinforcement Learning: A Survey [64.36174156782333]
Reinforcement learning is a learning paradigm for solving sequential decision-making problems.
Recent years have witnessed remarkable progress in reinforcement learning upon the fast development of deep neural networks.
transfer learning has arisen to tackle various challenges faced by reinforcement learning.
arXiv Detail & Related papers (2020-09-16T18:38:54Z) - Emergent Real-World Robotic Skills via Unsupervised Off-Policy
Reinforcement Learning [81.12201426668894]
We develop efficient reinforcement learning methods that acquire diverse skills without any reward function, and then repurpose these skills for downstream tasks.
We show that our proposed algorithm provides substantial improvement in learning efficiency, making reward-free real-world training feasible.
We also demonstrate that the learned skills can be composed using model predictive control for goal-oriented navigation, without any additional training.
arXiv Detail & Related papers (2020-04-27T17:38:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.