Maximum Entropy Model-based Reinforcement Learning
- URL: http://arxiv.org/abs/2112.01195v1
- Date: Thu, 2 Dec 2021 13:07:29 GMT
- Title: Maximum Entropy Model-based Reinforcement Learning
- Authors: Oleg Svidchenko, Aleksei Shpilman
- Abstract summary: This work connects exploration techniques and model-based reinforcement learning.
We have designed a novel exploration method that takes into account features of the model-based approach.
We also demonstrate through experiments that our method significantly improves the performance of the model-based algorithm Dreamer.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in reinforcement learning have demonstrated its ability to
solve hard agent-environment interaction tasks on a super-human level. However,
the application of reinforcement learning methods to practical and real-world
tasks is currently limited due to most RL state-of-art algorithms' sample
inefficiency, i.e., the need for a vast number of training episodes. For
example, OpenAI Five algorithm that has beaten human players in Dota 2 has
trained for thousands of years of game time. Several approaches exist that
tackle the issue of sample inefficiency, that either offers a more efficient
usage of already gathered experience or aim to gain a more relevant and diverse
experience via a better exploration of an environment. However, to our
knowledge, no such approach exists for model-based algorithms, that showed
their high sample efficiency in solving hard control tasks with
high-dimensional state space. This work connects exploration techniques and
model-based reinforcement learning. We have designed a novel exploration method
that takes into account features of the model-based approach. We also
demonstrate through experiments that our method significantly improves the
performance of the model-based algorithm Dreamer.
Related papers
- Accelerating Deep Learning with Fixed Time Budget [2.190627491782159]
This paper proposes an effective technique for training arbitrary deep learning models within fixed time constraints.
The proposed method is extensively evaluated in both classification and regression tasks in computer vision.
arXiv Detail & Related papers (2024-10-03T21:18:04Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Tactile Active Inference Reinforcement Learning for Efficient Robotic
Manipulation Skill Acquisition [10.072992621244042]
We propose a novel method for skill learning in robotic manipulation called Tactile Active Inference Reinforcement Learning (Tactile-AIRL)
To enhance the performance of reinforcement learning (RL), we introduce active inference, which integrates model-based techniques and intrinsic curiosity into the RL process.
We demonstrate that our method achieves significantly high training efficiency in non-prehensile objects pushing tasks.
arXiv Detail & Related papers (2023-11-19T10:19:22Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Simplified Temporal Consistency Reinforcement Learning [19.814047499837084]
We show that a simple representation learning approach relying on a latent dynamics model trained by latent temporal consistency is sufficient for high-performance RL.
Our approach outperforms model-free methods by a large margin and matches model-based methods' sample efficiency while training 2.4 times faster.
arXiv Detail & Related papers (2023-06-15T19:37:43Z) - Hint assisted reinforcement learning: an application in radio astronomy [2.4366811507669115]
We propose to use hints generated by the environment as an aid to the reinforcement learning process mitigating the complexity of model construction.
Results in several environments show that we get the increased sample efficiency by using hints as compared to model free methods.
arXiv Detail & Related papers (2023-01-10T12:24:13Z) - Divide & Conquer Imitation Learning [75.31752559017978]
Imitation Learning can be a powerful approach to bootstrap the learning process.
We present a novel algorithm designed to imitate complex robotic tasks from the states of an expert trajectory.
We show that our method imitates a non-holonomic navigation task and scales to a complex simulated robotic manipulation task with very high sample efficiency.
arXiv Detail & Related papers (2022-04-15T09:56:50Z) - Online reinforcement learning with sparse rewards through an active
inference capsule [62.997667081978825]
This paper introduces an active inference agent which minimizes the novel free energy of the expected future.
Our model is capable of solving sparse-reward problems with a very high sample efficiency.
We also introduce a novel method for approximating the prior model from the reward function, which simplifies the expression of complex objectives.
arXiv Detail & Related papers (2021-06-04T10:03:36Z) - Forgetful Experience Replay in Hierarchical Reinforcement Learning from
Demonstrations [55.41644538483948]
In this paper, we propose a combination of approaches that allow the agent to use low-quality demonstrations in complex vision-based environments.
Our proposed goal-oriented structuring of replay buffer allows the agent to automatically highlight sub-goals for solving complex hierarchical tasks in demonstrations.
The solution based on our algorithm beats all the solutions for the famous MineRL competition and allows the agent to mine a diamond in the Minecraft environment.
arXiv Detail & Related papers (2020-06-17T15:38:40Z) - Meta-Reinforcement Learning Robust to Distributional Shift via Model
Identification and Experience Relabeling [126.69933134648541]
We present a meta-reinforcement learning algorithm that is both efficient and extrapolates well when faced with out-of-distribution tasks at test time.
Our method is based on a simple insight: we recognize that dynamics models can be adapted efficiently and consistently with off-policy data.
arXiv Detail & Related papers (2020-06-12T13:34:46Z) - Can Increasing Input Dimensionality Improve Deep Reinforcement Learning? [15.578423102700764]
We propose an online feature extractor network (OFENet) that uses neural nets to produce good representations to be used as inputs to deep RL algorithms.
We show that the RL agents learn more efficiently with the high-dimensional representation than with the lower-dimensional state observations.
arXiv Detail & Related papers (2020-03-03T16:52:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.